
Beyond the Public Mempool:
Catching DeFi Attacks Before They Happen with

Real-Time Smart Contract Analysis

Bahareh Parhizkari1[0009−0006−3819−7939], Antonio Ken
Iannillo1[0000−0001−9358−7100], Christof Ferreira Torres2[0000−0001−6992−703X],
Sebastian Banescu3[0000−0003−0771−4826], Joseph Xu3[0000−0001−8831−4298], and

Radu State1[0000−0002−4751−9577]

1 SnT, University of Luxembourg
2 ETH Zurich

3 Quantstamp, Inc

Abstract. The rise of decentralized finance has brought a vast range of
opportunities to the blockchain space and many risks. This paper tack-
les the challenge of detecting malicious smart contracts on Ethereum
designed to exploit vulnerabilities and cause financial losses. We present
a novel approach for preemptively identifying malicious smart contracts
during their deployment stage. For this purpose, we gathered a dataset
comprising 161 malicious smart contracts and 5500 benign smart con-
tracts. By introducing and extracting various features related to the de-
ployer, transaction characteristics, and deployment bytecode and select-
ing the most impactful features, we developed multiple models using dif-
ferent machine learning (ML) classification algorithms, compared them
using the set of most impactful features, and selected the most accu-
rate one as our detection model. We compared the model’s performance
with a publicly available ML malicious smart contract detection tool to
benchmark it. The results demonstrate that our model achieves a supe-
rior True Positive Rate while having a lower False Positive Rate. Our
model achieved a 79.17% detection rate for malicious smart contracts
while maintaining a False Positive rate of less than 1.8%. Our model
provides swift detection capabilities by alerting users immediately after
a contract’s deployment, thus enabling timely response and risk mitiga-
tion.

1 Introduction

Blockchain technology has revolutionized different industries, creating new op-
portunities for innovation thanks to its decentralized and immutable ledger [50].

Ethereum [42] is a major blockchain platform that introduced the idea of
smart contracts, which are self-executing arrangements with applications span-
ning from decentralized finance (DeFi) [22] to supply chain management [31].
Focusing on DeFi, Ethereum applications aim to democratize finance by granting
individuals control over their assets and financial transactions.

2 B. Parhizkari et al.

Nonetheless, DeFi and its rapid growth have come with several challenges. As
DeFi projects thrive, they attract malicious actors (among the legitimate ones)
who seek to exploit vulnerabilities and flaws to steal assets. In the first half of
2023, the DeFi ecosystem accounted for almost half a billion dollars of losses [1].
It is worth noting that these threats are beyond financial losses because they
also undermine user trust and restrain the overall adoption of DeFi.

Upon discovering a vulnerability within a running project, attackers deploy a
malicious payload within a malicious smart contract. This smart contract serves
as a launchpad for their subsequent attack. Detecting these malicious smart
contracts is paramount in maintaining the security of the DeFi ecosystem and
mitigating losses. It enables the ecosystem to prevent attacks and empowers
DeFi projects to take necessary protective actions before an attack occurs. This
paper addresses the identification of malicious smart contracts at the moment of
their deployment, providing a proactive approach to mitigate potential attacks
even before they occur. Our research uses data analysis techniques and ML to
distinguish between malicious and benign smart contracts in real-time, allowing
for swift incident response and improved security measures.

In this paper, we present our methodology, dataset, and results. We dis-
cuss the challenges associated with DeFi security and introduce our innovative
method to detect malicious contracts.

Contributions. We summarize our contributions as follows:

– We assemble a dataset of 161 malicious smart contracts responsible for at-
tacks on DeFi protocols, resulting in over $1.6 billion of stolen funds.

– We introduce 465 novel features extracted from the proposed dataset. These
features synthesize information from the deployers, the bytecodes, and the
transactions. Through a feature selection process, we identify the most im-
pactful features.

– We evaluate different ML pipelines against the state-of-the-art malicious
smart contract detector (Forta ML). Our best detector outperformed the
Forta ML bot by detecting 21% more malicious smart contracts while raising
fewer False alerts.

– We discuss our model’s explainability by analyzing each feature’s impor-
tance and characteristics and demonstrating their resilience against attacker
evasion.

The following section presents the background of Ethereum, DeFi, and the
types of attacks the ecosystem faces (Section 2). We then detail our dataset,
methodology, and the models distinguishing malicious and benign contracts (Sec-
tion 3). The evaluation of our approach 4 and a discussion of the results and
their implications are also presented (Section 5). We conclude with related works
(Section 6) and future directions in the field of DeFi security (Section 7).

2 Background

This section provides the necessary background regarding smart contracts, at-
tacks on decentralized finance, and state-of-the-art countermeasures.

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 3

2.1 Ethereum Smart Contracts

Ethereum [42] is a blockchain platform that enables the execution of smart con-
tracts, offering a wide range of applications beyond cryptocurrency. Smart con-
tracts are self-executing agreements with the terms directly written into code,
allowing for trustless and automated transactions. At the core of Ethereum is
the Ethereum Virtual Machine (EVM), a runtime environment that executes
smart contracts.

Smart contracts are represented as bytecode, a low-level representation of
the contract’s code. Bytecode consists of opcodes, i.e., individual instructions
for the EVM. Upon deployment, a contract account will be associated with the
smart contract. Contract accounts are controlled by underlying smart contracts.
In the context of Ethereum, smart contracts automatically execute predefined
actions when certain conditions are met. Contracts have deployment bytecode
(used during contract deployment) and runtime bytecode (used after deploy-
ment). The deployment bytecode typically includes the constructor code, while
the runtime bytecode contains the contract’s functions and operations. In con-
trast, Externally Owned Accounts (EOAs), often called wallets, are traditional
Ethereum addresses controlled by private keys and operated by humans.

Transactions in Ethereum are messages EOAs send to interact with another
account, including EOAs and smart contracts, and aim to transfer amounts or
activate smart contract functionalities. Gas is a measure of computational work
required to execute a transaction. Users set a gas price and a maximum gas limit
for transactions. Furthermore, internal transactions refer to the secondary com-
munications that occur within the execution of smart contracts. These messages
come from smart contracts contacting other smart contracts.

We define a contract deployer as an EOA responsible for creating and de-
ploying a smart contract by sending a contract deployment transaction to the
blockchain.

2.2 Decentralized Finance (DeFi)

Decentralized Finance, or DeFi, refers to financial services and applications built
on blockchain technology. These services aim to create an open and decentralized
financial system. DeFi projects encompass various services, including decentral-
ized exchanges (DEXs) [41], lending and borrowing platforms [44], yield farm-
ing [11], derivatives [35], and more. TVL(Total Value Locked) is a key metric
in DeFi, representing the total amount of staked assets in DeFi projects. TVL
of DeFi is currently almost 100 billion dollars, representing the significance and
impact of DeFi as a financial market. DeFi projects are not without risks, as
attackers actively seek vulnerabilities in smart contracts to exploit and launch
attacks, including Reentrancy, Flash Loan attacks, and Oracle attacks.

An exploit uses code bugs, security flaws, or design weaknesses to steal assets
from or disrupt DeFi services. We define a malicious smart contract as a contract
that contains specific instructions or conditions, also called attack payload, that
leads to an exploit when triggered.

4 B. Parhizkari et al.

Attacks on DeFi protocols often occur in three stages: deployment, execution,
and extraction. In the deployment stage, attackers prepare and deploy malicious
smart contracts, setting up the infrastructure for their attacks. During the ex-
ecution stage, attackers activate these malicious smart contracts, initiating the
attack. Finally, in the extraction stage, attackers exfiltrate the stolen assets from
the blockchain.

Attackers can also leverage private pools [28], such as Flashbots [4], to ex-
ecute their transactions privately and hide their activities until the attack has
been completed, obscuring the malicious contract’s interactions from any tools
that monitor the public mempool. These private transaction pool providers are
already operating on Ethereum [30], and this trend is expected to grow on other
blockchain networks, further complicating the landscape of DeFi security and
countermeasures.

2.3 Countermeasures Against Attacks

Different countermeasures have been used against DeFi attacks and smart con-
tract attacks in the past few years. Some of them are similar to those of tradi-
tional software and include code audits, bug bounties, and vulnerability assess-
ments. Other techniques include monitoring the mempool and avoiding suspi-
cious transactions from being executed by reverting or frontrunning them. The
increasing trend of attackers using private pools emphasizes that monitoring the
public mempool alone is insufficient for detecting attacks and highlights the im-
portance of implementing defense mechanisms at the time of malicious contract
deployment.

Another aspect to consider are the rescue time windows [51]. The earliest
point at which an attack can be identified is during the deployment of the ma-
licious smart contract, as it represents the first transaction where indicators of
malicious behaviors become apparent. The time window between the malicious
smart contract deployment and the main attack transaction is the rescue time,
in which the damage can be minimized and mitigated using swift incident re-
sponse, such as reverting malicious transactions at runtime, pausing a protocol,
or applying security patches to vulnerable contracts. As a last measure, inform-
ing methods, such as alerting systems, keep DeFi protocols’ users and owners
informed about potential threats and incidents.

3 Methodology

This section presents a methodology to detect malicious smart contracts during
the contract deployment stage. By doing so, we aim to hamper potential attacks
before the actual attack transaction occurs. Figure 1 illustrates how our mali-
cious contract detection pipeline works. We start by monitoring the Ethereum
blockchain for new contract deployment transactions. Next, we gather raw data
from the transactions, analyze them, and extract predefined features. Finally,
we used our model to spot and label malicious smart contracts during contract

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 5

deployment quickly. Our final goal is to predict whether a smart contract is
deployed with malicious intent. Our approach involves the development of a sta-
tistical model and the application of supervised ML methods, offering a practical
solution to the defined issue.

Fig. 1: A general overview of our deployed malicious contract detection Pipeline.

Developing a statistical model begins with assembling a dataset of raw data.
It involves analyzing and cleaning the data, filtering out irrelevant information,
and extracting statistical features from raw data. The next step is to select the
most pertinent features from the extracted sets and apply various classification
algorithms to them to determine which algorithm yields the most effective re-
sults. The rest of this section outlines our dataset, feature extraction, analysis,
and model development procedures.

3.1 Dataset of Malicious and Benign Smart Contracts

Distinguishing malicious smart contracts from benign ones begins with assem-
bling a dataset. We collected a dataset of 161 malicious and 5,000 benign con-
tracts randomly picked from Ethereum and then analyzed their contract de-
ployment transactions for differentiation. We faced limitations in the number
of malicious smart contracts in our dataset, primarily due to the relatively low
occurrence of fully on-chain attacks. Most of the current attacks on DeFi have
an off-chain root cause, such as scams and compromised private keys. Further,
we tried incorporating attacks that occurred on other EVM-based chains, such
as Polygon and BSC. However, despite having a larger dataset of malicious con-
tracts, this approach reduced the accuracy. In future work, we could follow the
same approach and make the same model on other chains by training the model
with malicious smart contracts and benign ones specific to each chain. This
section elaborates on our dataset extraction process.

To find malicious contracts, we focused on attacks that occurred on Ethereum
between 2020 and 2024. We excluded attacks from off-chain sources, such as
stolen Private keys or phishing, and those lacking malicious smart contract en-
gagement. Our focus centered on attacks exploiting vulnerabilities inside the vic-
tim’s source code. Although some DeFi platforms have been operational since

6 B. Parhizkari et al.

2017, the number of attacks on DeFi before 2020 is limited, mostly from off-chain
vulnerabilities. Notably, both ChainSec [3] and Rekt News [6], two platforms that
document DeFi hacks, started their lists in 2020. It could be attributed to the
significant increase in TVL in DeFi around mid-2020 [2], capturing the attention
of attackers to the DeFi ecosystem.

We collected attack information from different sources. such as Defiyield’s
Rekt database [13], ChainSec’s list of DeFi hacks [3], and attacks explained in
Rekt News [6]. These services offer detailed descriptions of DeFi-related attacks.
Various addresses are involved in each attack, including malicious EOAs, mali-
cious smart contracts, victims, and other services used in attack preparation or
execution. Our approach includes exploring different sources to gather a dataset
of malicious smart contracts. First, we gathered attack transactions from the
services mentioned earlier to gather the dataset. Then, we explored each attack
transaction with chain explorers like Etherscan. In this stage, we labeled the
malicious account, the victims, and the malicious Smart contract for each attack
after manual validation. Our dataset includes 161 instances, each featuring a ma-
licious contract for attack execution. Due to the vast number of regular contracts
compared to malicious ones, we had to select a limited set of them for our data
analysis. We selected 5,000 random contracts, which is 20-30 times more than
the malicious smart contracts. We randomly selected Ethereum blocks spanning
from 15 million to 17.5 million to create a set of random contracts. Then, we
extracted every newly deployed smart contract within each selected block. We
checked each of these smart contracts to make sure they were benign.

We used this dataset of malicious and benign smart contracts to train the
ML-based models capable of distinguishing between malicious and benign smart
contracts. We collected all data available for contract deployment in our dataset.
They are grouped in the following categories:

1. Deployment Bytecode: The smart contract bytecode includes the primary
attack component, the malicious payload. While many studies focus on ex-
tracting software metrics directly from smart contract source code [24] [7],
our approach differs due to the unavailability of the source code of malicious
smart contracts. Moreover, using the smart contract bytecode makes our
approach more secure against anti-analysis techniques like code obfuscation.
Instead, we extract and evaluate features like code size, number of functions,
and frequency of opcodes directly from the smart contract bytecode. Smart
contracts are simple software with low complexity, therefore, simple features
such as what we mentioned before reflect their behavior better than syntac-
tic features. We chose the deployment bytecode over the execution bytecode,
as it is available for every smart contract and persists even after contract
destruction.

2. Contract Deployment Transaction: We also collected details of the con-
tract deployment transaction, encompassing all blockchain-stored data re-
lated to the transaction. It comprises both the transaction itself and the
transaction receipt. The transaction receipt reflects the state of the trans-
action and chain after the transaction execution and provides information

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 7

about user behaviors [49], and the transaction entails attributes assigned by
the deployer.

3. Transaction History and Attributes of the Deployer: Considering that
each account may have a history of past transactions, we explored the history
of the smart contract deployer address to extract further features. Previous
studies [33] [36] have established that malicious EOAs have some distinc-
tive characteristics in their history and attributes at the time of contract
deployment. The history-based features were highly impactful in identifying
malicious wallets and corresponding malicious smart contracts, significantly
influencing our final results.

3.2 Data Analysis and Preprocessing

Before extracting statistical features from our raw data, performing an ex-
ploratory analysis of the data is essential. This preliminary step provides insight
into the dataset and facilitates selecting the most relevant features.

In this paper, we focus on DeFi attacks from 2020 to 2024 and have one
or more contracts containing the malicious payload in their bytecode to fulfill
the attack. Note that the ledger contains an extensive volume of data that is
accessible through it. So, the data needs to be cleaned and reduced to a limited
set of features capable of differentiating the behavior of the deployers or the
deployed contracts.

For extracting features from the bytecodes, we utilized Crytic’s tool named
"evm_cfg_builder," [12] which assisted in extracting functions, attributes, and
basic blocks(basic block is a sequence of opcodes with no branches). Follow-
ing that, we conducted an in-depth investigation of the history of malicious
EOA during the pre-contract deployment. It involved investigating the number
of transactions and the contracts generated by these malicious accounts. Due to
the time-consuming nature of analyzing accounts with hundreds of thousands
of transactions, we narrowed the analysis for some features to include only one
week before the contract deployment.

3.3 Feature Engineering and Feature Selection

Before starting the predictive model’s implementation, we need to extract fea-
tures from raw data. This step aims to prune the data by eliminating irrelevant
information that does not contribute to the distinguishing process. Feature ex-
traction helps us better represent the problem, ensuring an accurate representa-
tion for deploying the final predictive model. We can derive features from raw
data by evaluating metrics such as frequencies, mean, and maximum for func-
tions, transactions, recipients, and other relevant parameters. The features are
categorized into the following three types:

– Bytecode’s features: It refers to features extracted from the deployment
bytecode, including aspects like the frequency of an operand in opcodes or
statistical attributes derived from the control flow graph (CFG).

8 B. Parhizkari et al.

Table 1: Definition of all 465 features extracted from the dataset, including the
corresponding source in the raw data.

Feature Name Definition

1-4 Deployer balance before/after contract
deployment(logarithmic and linear)

The balance of the deployer at the beginning/
end of the block where the contract deployment
transaction is deployed.

5-6 Deployer balance of Stablecoins
(logarithmic and linear representation)

Total balance of tokens(among Stablecoins
with more than $10M TVL) in USD after
contract deployment.

7-8 Deployer Value Sent/Received in 1 week
The total value (sent from)/(received by)
deployer through during the week leading
up to the contract deployment.

9 Deployer number of deployed contracts in
1 week

Total number of contracts deployed by deployer
in one week preceding the deployment of the
examining contract.

10 Deployer balance 1 week before contract
deployment

The deployer’s balance one week prior to
contract deployment.

11 Deployer balance Change in 1 week Deployer’s balance at the time of contract
deployment minus its balance one week prior.

12-13 Deployer Number of Transactions
(logarithmic and linear representation)

Number of transactions initialized by the
deployer until the contract deployment.

14-17 Deployer Age in Minutes/Blocks
(logarithmic and linear representation)

timestamp/blocknumber of the transaction
minus timestamp/blocknumber of the
deployer’s first transaction, presented in
minutes/blocknumbers.

18 Deployer Number of Recipient in 1 week
The count of all contracts to which the
deployer initiated any transaction within
one week before the examining transaction.

19 Deployer Average Gas Price in 1 week
The average gas price of all transactions
initiated by the deployer within one week
before examining transaction.

20 Deployer Number of Transactions per
Recipient in 1 week

The deployer’s number of transactions
divided by the number of recipients within
the week before the examining transaction.

21 Transaction’s maximum gas fee Transaction’s ’maxFeePerGas’ attribute.

22 Transaction’s maximum priority gas fee Transaction’s ’maxPriorityFeePerGas’
attribute.

23 Transaction’s priority gas fee per gas
price

Priority gas fee of the transaction divided
by block’s gas price.

24 Transaction’s maximum priority gas fee
per gas price

The maximum priority gas fee of the
transaction divided by the block’s gas price.

25 Code size in bytes The size of the contract in bytes.

26 Number of functions The number of functions in the contract.

27-167 Opcode: Count The frequency of a specific opcode in the
contract.

168-308 Opcode: rate per number of functions Opcode: Count divided by the number of
functions.

309-449 Opcode: rate per bytecode size Opcode: Count divided by the code size.

450 Bytecode bytes per number of functions The code size in bytes divided by the
number of functions.

451-453 Avg/Max/Min Function Size Indicating the Avg/Max/Min number of
opcodes in a function.

454-456 Avg/Max/Min Basic Block Size The Avg/Max/Min number of opcodes
in a Basic Block.

457-459 Avg/Max/Min Basic Block per function The Avg/Max/Min number of Basic
Blocks in a Function.

460-462 Number of payable/view/pure functions Number of functions with ’payable’ /
’view’ / ’pure’ attribute.

463-465 Percentage of payable/view/pure
functions

Number of payable/view/pure functions
divided by the total number of functions.

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 9

Fig. 2: We utilized 5 different feature selection methods from the 3 most common
classes of feature selection methods.

– Transaction Features: In this category, we include all features derived
from the transaction’s attributes, giving special attention to those assigned
by the deployer, such as the maximum gas fee.

– Deployer’s features: Within this type, we extract features from the con-
tract’s deployer at the time of contract deployment. These features involve
their characteristics during contract deployment, such as balance and history.

We extracted 465 distinctive novel features from our raw data, each corre-
sponding to one of these three types. Table 1 explains each feature. In addition
to the previously specified features, we incorporated a label to indicate whether
a contract is malicious. This label is the model’s target value. It assigns a value
of 1 if the contract is malicious and 0 otherwise. The techniques employed for
feature extraction vary depending on the feature class and its inherent charac-
teristics. In the subsequent part of this section, we will describe all the features
we extracted and discuss how we selected the most impactful ones. We carried
out this meticulous selection by evaluating several feature selection methods, all
of which aim to improve the identification of malicious contracts.

Feature selection selects the most valuable and beneficial features from the
entire set of extracted features for training the model [25]. Selection criteria often
include the features’ correlation with the target variable and their independence
from one another. The rationale behind this practice is to avoid the unnecessary
computational overhead that comes with using all extracted features. Further-
more, the exclusion of less valuable features mitigates the risk of overfitting by
reducing redundant features, thereby enhancing the model’s ability to generalize
to new, unseen data.

Our research employs five techniques for feature selection from the three
most common classes of feature selection techniques, including filter methods,
wrapper methods, and embedded and hybrid methods [25]. The techniques we
utilized include Pearson Correlation feature selection, Chi-square, Recursive Fea-
ture Elimination, and selecting features based on their importance concerning
the target value using Linear (Logistic Regression) and Tree-based (Random
Forest) estimators. Figure 2 illustrates all various feature selection methods and
their corresponding categories. Our feature selection process leveraged the func-

10 B. Parhizkari et al.

tionality provided by Scikit-learn’s feature selection library [39] to select the
most practical features for our analysis. From the initial set of 465 features pre-
sented in table 1, we narrowed the list to all 45 features consistently selected
by all the algorithms as mentioned earlier as the 30% best features among all
extracted features. Table 2 represents the final list of all selected features.

Predicting whether a given contract is malicious or benign is considered a
classification problem within the domain of ML. Classification algorithms, as
a subset of supervised ML methods, aim to label provided data by applying a
predefined classifier model. These algorithms learn patterns and characteristics
from labeled datasets, enabling them to make predictions on new, unseen data. In
the case of contract identification, the model aims to differentiate the features
associated with malicious behavior from those indicative of benign contracts.
We imported features as tabular data with labels to train our classifier and
normalized them using Standard Scaler. This model allows us to determine if
a contract is malicious immediately after its deployment by extracting features
from the contract and inputting them into the model.

3.4 Training and Validation

The final step in constructing our prediction model involves selecting the most
fitting ML algorithm for our specific prediction problem. We split the data into
training and test datasets to determine the optimal algorithm and constructed
the model using the training data. Our model’s validation process involves con-
structing a model using the training dataset and assessing its performance on
the test dataset.

For performing the train-test split, we employed a time-based approach,
which means we assigned all data from 2020 to mid-2023 to the training dataset

Table 2: List of the 45 selected features among the 465 available features.
Feature Name

1-3 Deployer age in minutes(log and linear) and in blocks (linear)

4 Deployer Balance after contract deployment(log)

5 Deployer Number of Transactions(log)

6-7 Avg/Max Function Size

8 Deployer Average Gas Price in 1 week

9 Deployer Balance of Stablecoins(linear)

10 Deployer Number of Transaction per Recipient in 1 week

11-20 Opcode count: RETURNDATASIZE, CALL, GAS, LOG3, GT, PUSH20, SLOAD, SHR,
SLT, RETURNDATACOPY

21-30 Opcode rate per number of Functions: SSTORE, ADDRESS, PUSH20, EXTCODESIZE,
RETURNDATASIZE, CALLVALUE, SHA3, GT, CALL, REVERT

31-45 Opcode rate per bytecode size: PUSH20, CALL, CALLDATACOPY, CODECOPY, POP,
SHR, SLT, SSTORE, ADDRESS, EXTCODESIZE, GAS, SHA3, DUP8, DUP7, RETURN

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 11

Table 3: Number of contracts in each dataset following the train-test split.
Train Dataset Test Dataset

Num of Malicious Contracts 137 24
Num of Benign Contracts 5000 500

and the remaining data from mid-2023 to the test dataset. We chose this time-
based approach to ensure that our prediction model is evaluated on data that
simulates real-world conditions as closely as possible. This is essential in our
context since assessing whether a contract is malicious based on a model derived
from contracts deployed in the future is inherently impractical, considering that
attacks are evolving. In other words, our approach helps us evaluate the model’s
ability to generalize to new, unseen data effectively and assess its real-world
applicability.

Table 3 shows the size of our train and test dataset, where the test data is
chronologically newer than the training data.

Note that the number of malicious contracts is considerably lower than the
total number of deployed contracts, prompting a challenge to realize whether we
can enhance the results by balancing the dataset. To answer this question, we
implemented resampling methods.

Given the large number of contracts deployed in Ethereum’s history, it is im-
practical to comprehensively crawl all benign contracts throughout Ethereum’s
history. Therefore, we opted for a random under-sampling approach [26]. It in-
volves selecting a subset of all actual benign contracts for the model creation.
We evaluated the model for different quantities of benign contracts and discov-
ered that increasing it beyond 5,000 did not enhance the accuracy. The next
consideration is whether we can enhance our model’s performance through over-
sampling techniques. To explore this, we applied various over-sampling methods
on the malicious dataset, including the Synthetic Minority over-sampling Tech-
nique (SMOTE) [9], Borderline SMOTE [21], and Adaptive Synthetic Sampling
(ADASYN) [23] to augment the number of malicious contracts. Our observations
demonstrate that every over-sampling technique led to a reduction in model ac-
curacy. We have detailed observations in Appendix A. We attribute this obser-
vation to the sensitivity of our malicious dataset, which appears to be intolerant
of synthetic data forged by over-sampling methods. Our dataset contains vari-
ous malicious contracts associated with attacks, such as Reentrancy, Flash Loan
attacks, and Oracle attacks. Each attack has distinct characteristics, making it
challenging to combine them all and forge synthetic data.

In this study, we applied five different binary classification algorithms. For
each algorithm, we created the model that assigns a probability of being ma-
licious to a contract. Then, we evaluated their performance and conducted a
comparison among all of them. To maximize their efficiency, we also performed
a grid search hyperparameter tuning process for Random Forest, XGBoost, and
MLP algorithms. Hyperparameter tuning is identifying the optimal hyperpa-

12 B. Parhizkari et al.

Fig. 3: Comparing the effectiveness of concerning classification algorithms via
ROC curve. It depicts the relative trade-offs between TPR and FPS.

rameters of a machine learning algorithm. This process is performed using the
training data and is crucial for enhancing the model’s performance and achieving
the highest possible accuracy. We have explained this process in more detail in
Appendix B.

Figure 3 illustrates each model’s result in a receiver operating characteristic
(ROC) curve. This diagram visually represents the performance of binary classi-
fiers by evaluating their True Positive Rate(TPR) and False Positive Rate(FPR)
at various thresholds. It plots TPR against FPR to provide insights into the clas-
sifier’s effectiveness. Note that our model is sensitive to high FPRs, given that
almost 1000 contracts are deployed on Ethereum each day, and processing more
than 20 false alerts per day is impractical. To select one algorithm among those
presented and the optimal threshold on the probability of being malicious for
each model, we prioritize thresholds that keep the FPR below 2% while max-
imizing the TPR. We also leverage the "Area Under the ROC Curve (AUC)"
metric. This metric is an aggregate measure of performance across all possible
classification thresholds. Table 4 compares all five classification algorithms with
three different evaluation metrics.

In the ROC curve visual representation and metric analysis, the tree-based
gradient boosting algorithms, XGBoost, and Random Forest achieved the highest
AUC among all considered algorithms.

Figure 3 shows that the ROC curve of these two algorithms closely overlap,
and they both achieved a TPR of 1.0 while maintaining an FPR of less than
30%. Nevertheless, this FPR cannot be tolerated, and their F1 and Recall are
not competitive. Logistic Regression and SVM both show smooth ROC curves.
Although Logistic Regression achieved a high F1 measure, MLP’s F1 score is
competitive, and it outperforms other algorithms regarding recall. Hence, the

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 13

next step involves evaluating our model with MLP, and we will make the final
selection based on our tolerance for false alarms.

4 Evaluation and Benchmarking

Our test dataset incorporated 24 malicious contracts associated with known
attacks, deployed from mid-July 2023 to mid-January 2024, and 500 benign
contracts deployed in the same period. We extracted 45 features from our feature
set and assessed the training model using the MLP algorithm. Table 5 presents
the TPR and FPR for our evaluation across different probability thresholds.
The TPR approximates the probability of correctly detecting a malicious smart
contract, while the FPR represents the probability of erroneously flagging a
benign contract as malicious. Note that the TPR is the most crucial metric in
our evaluation since overlooking an important hack can lead to a loss of millions
of dollars. In contrast, FPR incurs some manual analysis costs, although they are
still less than the potential damages caused by an actual hack. Nonetheless, given
the daily volume of contract deployment, we must be cautious about accepting
a high FPR, as an excess of false alarms may diminish the attention to alarms
related to real attacks. We aim to optimize the TPR while concurrently keeping
the FPR as low as possible.

Referring to the table 5, it becomes apparent that increasing the TPR to
over 80% comes at a substantial cost to the FPR. Based on the F1 scores shown

Table 4: Comparison of evaluation metrics for different classification algorithms.
Classification Algorithm AUC F1 Score Recall

Random Forest 0.9623 0.7805 0.6667
XGBoost 0.9600 0.7727 0.7083
Logistic Regression 0.9476 0.8372 0.7500
SVM 0.9234 0.6842 0.5417
MLP 0.9493 0.8163 0.8333

Table 5: TPR, FPR, and F1 score evaluation across various thresholds of MLP
algorithm. The selected thresholds are highlighted.

Threshold TPR FPR F1 score

1 1.00 0.042 0.000 0.080
2 0.4548 0.667 0.000 0.800
3 0.3111 0.708 0.005 0.809
4 0.0637 0.792 0.015 0.826
5 0.0499 0.833 0.02 0.833
6 0.0197 0.875 0.035 0.750
7 0.0003 0.917 0.217 0.494
8 0.0001 0.958 0.354 0.393

14 B. Parhizkari et al.

Table 6: Comparing the performance of our model with Forta ML Bot.
Metrics Our Model Forta ML Bot

Malicious Contracts 24 24
True Positive 19 14
True Positive Rate 79.17% 58.33%
False Negative 5 10
False Negative Rate 20.83% 41.66%

Benign Contracts 500 500
False Positive 9 11
False Positive Rate 1.8% 2.2%
True Negative 491 489
True Negative Rate 98.2% 97.8%

in the table, rows 4 and 5 achieved the highest F1 scores, and their values are
relatively close. Consequently, we set the threshold as the mean of rows 4 and 5.
Note that in both cases, the model maintains the FPR below 2%. This selected
threshold allows us to achieve a strong TPR while maintaining a low FPR.

Following the optimization of our model, we conducted a comparative anal-
ysis with another tool designed for detecting malicious smart contracts, which
is the Malicious Smart Contract Detection ML Bot [18] , deployed on the Forta
network’s explorer [5]. Henceforth, we will use the name "Forta ML Bot" to
refer to this Bot. This bot is now recognized as one of the ten most popular bots
among all Forta bots. The current version of this tool, V3, has been operational
since its launch on 02/06/2023.

We compared our model with the only accessible tool, Forta ML Bot, and
analyzed the alerts related to the smart contracts in our test dataset. This test
dataset includes 24 malicious smart contracts and 500 benign smart contacts.
Thus, we computed the TPR and FPR. The table 6 outlines the TPR and FPR
of it compared to our model. As illustrated in the table 6, our model considerably
outperforms the Forta ML Bot, achieving a TPR of 79% compared to Forta’s
58%. In addition, we generated two fewer false alerts among all 500 benign
contracts in our test dataset.

5 Discussion

In this paper, we introduced our malicious contract detection model, designed to
identify attacks on DeFi protocols in Ethereum before the execution. Our model
leverages statistical features extracted from the bytecode of the malicious con-
tract, the malicious deployer, and the malicious contract deployment transaction
itself. By employing MLP, a neural network classifier, we trained and tested our
model on a dataset comprising benign and malicious transactions throughout
2020-2024.

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 15

Table 7: Evaluating the detection accuracy across 24 recent attacks by comparing
labels assigned by our model and Forta ML bot.

Victim Project Attack Date Malicious Contract Labels

Our Model Forta ML

1 Conic Finance 21.07.2023 0x743599ba5cfa3ce8c59691af5ef279aaafa2e4eb malicious benign
2 Curve Pools 30.07.2023 0xa757328ff7ab8c36e7286c559d8ab03578036b95 benign benign
3 Curve Pools 30.07.2023 0x83e056ba00beae4d8aa83deb326a90a4e100d0c1 malicious malicious
4 Uwerx 02.08.2023 0xda2ccfc4557ba55eada3cbebd0aeffcf97fc14ca malicious malicious
5 Earning Farm 09.08.2023 0xfe141c32e36ba7601d128f0c39dedbe0f6abb983 malicious malicious
6 Safe Wallet 12.08.2023 0x965a3a6016c2edf0605a2b1c38c7159b495c0573 benign malicious
7 Safe Wallet 12.08.2023 0xa1038f644389c04318156d54e40679b98b686838 malicious benign
8 Safe Wallet 12.08.2023 0xabb8cdd69f76cfd779d18adec982f898bfefe680 malicious benign
9 Zunami 13.08.2023 0xa21a2b59d80dc42d332f778cbb9ea127100e5d75 malicious malicious

10 BTC20Token 19.08.2023 0xb7fbf984a50cd7c66e6da3448d68d9f3b7f24f33 malicious malicious
11 EthereumHive 21.08.2023 0xe7d9a93541fa79d6ecf3dc5997632177146dcb84 malicious benign
12 Balancer V2 27.08.2023 0x2100dcd8758ab8b89b9b545a43a1e47e8e2944f0 malicious malicious
13 FloorDAO 05.09.2023 0x6ce5a85cff4c70591da82de5eb91c3fa38b40595 malicious benign
14 Hope Lend 18.10.2023 0xc74b72bbf904bac9fac880303922fc76a69f0bb4 benign benign
15 UniBot 31.10.2023 0x2b326a17b5ef826fa4e17d3836364ae1f0231a6f malicious benign
16 Onyx Protocol 01.11.2023 0x052ad2f779c1b557d9637227036ccaad623fceaa malicious malicious
17 Unknown MEV 07.11.2023 0xeadf72fd4733665854c76926f4473389ff1b78b1 malicious malicious
18 Raft 10.11.2023 0x0a3340129816a86b62b7eafd61427f743c315ef8 malicious malicious
19 KyberSwap 23.11.2023 0xaf2acf3d4ab78e4c702256d214a3189a874cdc13 malicious benign
20 Peapods yield 13.12.2023 0x928b2dae97fc5d40cb0552815fb5ab071103e20a malicious malicious
21 Hypr OP Stack 13.12.2023 0xba6fa6e8500cd8eeda8ebb9dfbcc554ff4a3eb77 Benign No info
22 GoodDollar 16.12.2023 0xf06ab383528f51da67e2b2407327731770156ed6 malicious malicious
23 NFT Trader 16.12.2023 0xc446e0a1e22b54e18303022ff8c5c8ab364d6ebb benign malicious
24 Wise Lending 12.01.2024 0x91c49cc7fbfe8f70aceeb075952cd64817f9d82c malicious malicious

5.1 Analysis of Recent Attacks

The results showcase our model’s capability to detect malicious smart contracts
before attack execution, with a TPR of 79% while maintaining an FPR below
1.8%. Table 7 displays 24 malicious smart contracts associated with ten recent
hacks in Ethereum. As evident from the results, our model successfully identified
19 malicious contracts. In comparison, the Forta ML Bot identified only 14
malicious contracts. Forta ML Bot failed to identify one of the malicious contract
deployment, leaving it unlabeled. We consider this unlabeled contract as a False
Negative, as it corresponds to an attack and went undetected. Our model’s high
accuracy is attributed to merging various characteristics from both the malicious
account and the malicious smart contract, offering us a comprehensive set of
traits indicating any potential attack attempt.

Beyond achieving a higher TPR, our model detects malicious smart contracts
instantly after deployment. This rapid response is attributed to our focus on
a concise set of the most impactful features. This rapid detection capability
provides victims valuable rescue time, enabling them to safeguard themselves
from potential attacks.

5.2 Managing Alerts and False Positives

In a security system, reaching a perfect 100% accuracy is impossible. As defense
systems advance, attackers concurrently refine and adapt their malicious strate-

16 B. Parhizkari et al.

gies. Our model exhibits a 79% TPR, indicating its effectiveness in identifying
potential attacks on the Ethereum network. Although the False Positive Rate
(FPR) of our model is low, the operational burden of responding to all flagged
smart contracts is significant. To reduce this burden, human analysts can as-
sist in reviewing flagged smart contracts. The system can be integrated into an
incident response system, allowing security professionals to assess alerts before
taking any decisive actions.

Our analysis specifically concentrates on contracts deployed through normal
transactions, and we exclude contracts deployed through other smart contracts
from our analysis, operating under the assumption that a benign smart con-
tract is unlikely to instantiate a malicious one. Moreover, if the deployer itself
is malicious, it is preferable to identify it during its initial stages. To justify this
model’s FPR, we crawled all contracts deployed through Normal transactions
on Ethereum during November and December 2023. We identified almost 50,000
contracts deployed over 61 days, averaging 700-1000 contracts daily. Maintain-
ing the FPR at 1.8% will result in 12-18 False alerts a day. An efficient incident
response team integrates an automated attack identification system alongside
analysts working in shifts to achieve 24/7 coverage. Assuming each shift in-
cludes at least two analysts, which is the minimum required, and assuming each
false alert requires 1 hour of analyst effort, this team can easily analyze all 12-18
False Alerts raised per day.

5.3 Model Explanation and Summary

Before concluding this paper, we want to clarify the significance of some key
features we have selected and provide the rationale behind their inclusion. To
aid in this explanation, we employ a Shap summary plot [27]. Figure 4 presents
a Shap value summary plot, offering an overview of the top 10 most impact-
ful features within our selected feature set according to their absolute mean
SHAP values. In this diagram, red dots represent the scaled values for malicious
contracts, while blue dots represent the scaled values for benign contracts. Lever-
aging Shap values for interpretation enhances our model’s transparency, making
it more understandable and trustworthy.

Using figure 4, we conducted an in-depth analysis to uncover the underly-
ing reasons and root causes behind the effectiveness of some features in distin-
guishing malicious contracts from benign ones and associated each feature with
specific malicious behavior. Since these features are linked to a diverse set of ma-
licious behaviors, many of which are inherent and unavoidable, our model can
also detect new, previously unknown attacks. The outcomes of this investigation
are detailed as follows:

1. Deployer Balance After Contract Deployment: The figure 4 shows
that a high balance after contract deployment may be associated with being
a malicious wallet. Please note that our comparison is specifically about EOA
Wallets and does not include services such as exchanges. This behavior aligns
with the attackers’ nature, as they typically need some funding to execute

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 17

Fig. 4: SHAP values summary plot for top 10 most impactful features among all
selected features.

an attack. In contrast, benign deployers only need to fund their contract
deployment and can add funds to their accounts later. The required funding
exceeds the average balance needed by a regular wallet to deploy a contract,
resulting in a higher balance for malicious wallets than normal wallets.

2. Deployer Number of Transactions: Attackers typically assign a dedi-
cated wallet address solely for initiating attacks, avoiding any other utiliza-
tion. This behavior assists them in preserving anonymity and safeguarding
their identity from disclosure. Making fewer transactions is a secure and
straightforward strategy to avoid the identification of their activities by var-
ious addresses. As depicted in the figure 4, the number of transactions by
the attacker is significantly lower than that of benign accounts, making it an
effective detection feature.

3. POP and SHA3 Opcode: rate per bytes:
Malicious smart contracts have more complex contracts with a higher num-
ber of basic blocks, they also have a higher interaction with storage and
memory. The POP opcode removes the top value from the stack. It can also
be used to empty it entirely. Both managing branches between basic blocks
and interactions with storage and memory require pop opcodes and they
cannot be evaded.
SHA3 is an opcode used to hash data and generate function signatures from
function names. It can also be used to enhance the security and privacy
of information stored within the smart contract. However, malicious smart
contracts are deployed for temporary usage and don’t need a long-term pro-
tection system. Therefore, they use less SHA3 opcodes.

4. CALL Opcode: rate per bytes: Call opcode is utilized when a smart
contract communicates with another smart contract by calling a function
in the target contract and initiating an internal transaction. Our investi-
gation shows that malicious smart contracts exhibit a higher frequency of
call opcodes than benign ones, which means they have more extensive com-
munication with other smart contracts. This behavior stems from various

18 B. Parhizkari et al.

reasons, such as utilizing multiple on-chain tools for executing their attack,
invoking several exploit payloads on the victim contract, or communicating
with mixing services to conceal the origin and flow of stolen assets. Even
though malicious smart contracts on average have more bytes compared to
benign ones, they still have a higher Call opcode rate per number of bytes.

5. Deployer Age in Blocks: An account that has been active for a long time
is generally less prone to be malicious. It arises from the typical common
among attackers, who usually create malicious accounts after discovering vul-
nerabilities within a victim’s contract address. They prefer to exploit these
vulnerabilities swiftly before other attackers hack them or project owners
address and rectify them.

6. EXTCODESIZE Opcode: rate per bytes: The EXTCODESIZE opcode
was initially designed to determine the size of a smart contract account’s
code. Then, it became a usual tool for distinguishing smart contracts from
EOAs. According to the Shap value summary plot, malicious contracts utilize
a higher count of EXTCODESIZE opcodes compared to the size of the code
or the total number of opcodes. This behavior may stem from the fact that
malicious contracts often need to identify potential contracts and check their
bytecode size. In contrast, normal contracts typically interact with addresses
they are already familiar with. Note that while many attackers don’t use this
opcode at all, the diagram illustrates a small percentage of attackers who
employ it multiple times in their bytecodes.

7. SHR Opcode: rate per bytes and total count SHR is an opcode used
in data manipulation. It shifts a specific part of the data to the right. It
is commonly used to split a string of data received through the call to its
components. A smaller number of SHR opcodes in malicious contracts indi-
cates a lower number of functions, along with fewer inputs for each function.
Malicious smart contracts are not designed to deal with several users and
do a variety of tasks, so they don’t need to split huge amounts of data to
process and validate.

8. Deployer Number of Transactions per Recipient: While malicious de-
ployers initiate fewer overall transactions compared to benign deployers, their
number of transactions per recipient is notably high. This pattern suggests
that they tend to communicate with only a limited number of recipients,
helping them to protect their identity from being discovered.

5.4 Security Against Elusive Attackers

Given our method’s reliance on a predefined model that analyzes historical data,
a common concern is: what if an attacker tries to trick it by mimicking benign
transaction patterns and matching their history and bytecode to resemble a be-
nign smart contract? We confidently state that our method is secure against such
elusive attackers, and here are two reasons supporting our claim. First, many of
these features are based on the inherent behavior of attackers or malicious smart
contracts, and altering them would make the launch of an attack practically im-
possible. For instance, launching an attack without funding or making repeated

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 19

calls to victim contracts is inherently impossible. Furthermore, several features
are intricately linked to the attacker’s history. Altering this history demands con-
siderable time, while attackers typically aim to launch the attack swiftly upon
discovering a vulnerability. Aiming to exploit it before other attackers discover
and exploit it or project owners identify and remedy the vulnerability. This in-
herent time constraint makes it significantly challenging and time-consuming for
attackers attempting to evade our detection method. The two reasons mentioned
above emphasize that any attempt by attackers to evade our detection method
would be highly time-consuming, causing delays in launching their attacks. Ad-
ditionally, the effectiveness of evasion methods is not guaranteed regarding the
high sensitivity of our engine to positive alerts and the inherent characteristics
of malicious smart contracts.

6 Related Work

Several solutions have been put forth to detect malicious attacks on smart con-
tracts. ECFChecker [20] facilitates the real-time identification of reentrancy
attacks through a modified EVM. DEFIER [40] employs sequence-based clas-
sification on the transaction history between EOA and smart contracts to pin-
point indicative patterns of malicious EOA. SODA [10] employs a customized
Ethereum client to incorporate bespoke modules for the real-time detection of
malevolent transactions. Perez et al. [32] employ Datalog for scrutinizing the
transactions of vulnerable smart contracts previously flagged by earlier research.
EthScope [43] imports historical data into an Elasticsearch database and sup-
plements the client with dynamic taint analysis capabilities for transaction exam-
ination. Zhou et al. [52] delve into the realm of attacks and their corresponding
defenses by translating transactional data into action trees and result graphs.
TxSpector [46] embraces the Datalog facts originally proposed in Vandal [8]
to detect attacks that leverage only a single transaction. Torres et al. pro-
pose Horus [15] a framework to detect and analyze multi-transactional attacks
using Datalog without modifying the Ethereum client. Gai et al. [19] propose
BlockGPT, a large language model that is trained using execution traces of
transactions and which is capable of detecting anomalous transactions.

Besides presenting solutions to detect attacks on smart contracts at run-
time, academia has also proposed novel methods to defend against such attacks.
This includes strategies such as patching smart contract vulnerabilities before
deployment [16, 29, 38, 45, 47] as well as dynamically blocking attacks at run-
time [17, 34, 37, 48]. Sereum [37] suggests an adapted EVM to shield deployed
smart contracts from reentrancy attacks by reverting malicious transactions at
runtime. ÆGIS [14,17] offers a smart contract that governs a set of attack pat-
terns written using a domain-specific language which acts as a safeguard against
a wide array of runtime threats by reverting transactions that match any of the
attack patterns. However, Sereum and ÆGIS can only block attacks that they
are aware of. Zhuo et al. [48] present STING, a runtime tool to defend against
smart contract exploits by synthesizing counterattack smart contracts from at-

20 B. Parhizkari et al.

tacking transactions to front-run attackers and secure funds following a white hat
approach. The authors demonstrate that they are capable of successfully coun-
tering 54 of 62 real-world exploits. Qin et al. [34] propose a similar approach by
introducing Ape, a tool that leverages dynamic program analysis to automat-
ically synthesize adversarial smart contracts. While more generic, STING and
Ape have a significant drawback, both approaches assume that attackers submit
their transactions via the public mempool and therefore allow STING and Ape
to quickly simulate and detect malicious transactions. Parhizkari et al. [30] has
concluded that there is an increasing trend towards attackers leveraging private
mempools to hide their attacking transactions, meaning that STING and Ape
would not be able to defend against such attacks.

Our approach leverages an observation from Zhou et al. [51]’s insights on
a recent analysis of past DeFi attacks. Zhou et al. observe that most attacks
are performed in two steps, where in the first step the attacker deploys a mali-
cious smart contract and in the second step the attacker triggers the attacking
transaction. The work presented in this paper aims to detect malicious contract
deployments and allows security professionals to react before the actual attack
is conducted.

7 Conclusion

In this research, we proposed a method for detecting malicious smart contracts
during the contract deployment stage. Our approach leveraged three categories
of raw data derived from a newly deployed contract, including transaction at-
tributes, the deployer’s attributes and history, and the deployment bytecode.
We extracted 465 features from these categories but selected only 45 as the most
impactful ones, identifying them through a combination of feature selection ap-
proaches. Our final model is based on a diverse array of features from mentioned
sources and encompasses various adversarial behaviors, allowing it to effectively
detect a broad set of malicious smart contracts. Further, many of the proposed
features can protect the system against elusive attackers.

We compared different ML approaches: logistic regression, SVM, random
forest, XGBoost, and MLP. The latter performs better in terms of F1 score and
recall. Considering the huge number of daily deployed contracts, we want to
keep the FPR as low as possible and select the MLP with a threshold of 0.06
as our best usable result. We also compared this model with the only publicly
available tool, the FORTA ML bot. Our solution performs better for both TPR
(79% against 58.33%) and FPR (1.8% against 2.2%).

Future research directions should further reduce the FPR. Exploring more
advanced feature engineering techniques, incorporating additional data sources,
and refining the model parameters may contribute to enhancing the accuracy and
precision of our detection method. Additionally, addressing adversarial strategies
and continuously optimizing the model’s parameters will still be essential for
improving its robustness and ensuring its real-world effectiveness in the rapidly
evolving DeFi landscape.

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 21

References

1. Crypto hackers net nearly $480 million year-to-date. https://beincrypto.com/
defi-hacks-net-half-billion-2023. Accessed Oct 20, 2023.

2. Defillama. https://defillama.com. Accessed Jan 20, 2024.
3. Documented timeline of defi exploits. https://chainsec.io/defi-hacks. Ac-

cessed Jan 20, 2024.
4. Flashbots docs. https://docs.flashbots.net. Accessed Sep 13, 2023.
5. Forta explorer. https://explorer.forta.network. Accessed Jan 20, 2024.
6. Rekt news. https://rekt.news. Accessed Jan 20, 2024.
7. Nemitari Ajienka, Peter Vangorp, and Andrea Capiluppi. An empirical analysis of

source code metrics and smart contract resource consumption. Journal of Software:
Evolution and Process, 32(10):e2267, 2020.

8. Lexi Brent, Anton Jurisevic, Michael Kong, Eric Liu, Francois Gauthier, Vincent
Gramoli, Ralph Holz, and Bernhard Scholz. Vandal: A scalable security analysis
framework for smart contracts. arXiv preprint arXiv:1809.03981, 2018.

9. Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelli-
gence research, 16:321–357, 2002.

10. Ting Chen, Rong Cao, Ting Li, Xiapu Luo, Guofei Gu, Yufei Zhang, Zhou Liao,
Hang Zhu, Gang Chen, Zheyuan He, et al. Soda: A generic online detection frame-
work for smart contracts. In Proceedings of the Network and Distributed System
Security Symposium (NDSS’20), 2020.

11. Simon Cousaert, Jiahua Xu, and Toshiko Matsui. Sok: Yield aggregators in defi. In
2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
pages 1–14. IEEE, 2022.

12. Crytic. Evm cfg builder. https://github.com/crytic/evm_cfg_builder. Ac-
cessed Sep 13, 2023.

13. DefiYield. Top crypto hacks. https://defiyield.app/rekt-database. Accessed
Jan 20, 2024.

14. Christof Ferreira Torres, Mathis Baden, Robert Norvill, and Hugo Jonker. ÆGIS:
Smart Shielding of Smart Contracts. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, pages 2589–2591, 2019.

15. Christof Ferreira Torres, Antonio Ken Iannillo, Arthur Gervais, and Radu State.
The eye of horus: Spotting and analyzing attacks on ethereum smart contracts.
In International Conference on Financial Cryptography and Data Security, pages
33–52. Springer, 2021.

16. Christof Ferreira Torres, Hugo Jonker, and Radu State. Elysium: Context-aware
bytecode-level patching to automatically heal vulnerable smart contracts. In Pro-
ceedings of the 25th International Symposium on Research in Attacks, Intrusions
and Defenses, pages 115–128, 2022.

17. Christof Ferreira Torres, Mathis Steichen, Robert Norvill, Beltran Fiz Pontiveros,
and Hugo Jonker. ÆGIS: Shielding Vulnerable Smart Contracts Against Attacks.
In Proceedings of the 15th ACM Asia Conference on Computer and Communica-
tions Security (ASIA CCS’20), October 5–9, 2020, Taipei, Taiwan, 2020.

18. Forta-Network. How forta’s predictive ml models detect attacks before exploita-
tion. https://forta.org/blog/how-fortas-predictive-ml-models-detect-_
attacks-before-exploitation.

19. Yu Gai, Liyi Zhou, Kaihua Qin, Dawn Song, and Arthur Gervais. Blockchain large
language models. arXiv preprint arXiv:2304.12749, 2023.

https://beincrypto.com/defi-hacks-net-half-billion-2023
https://beincrypto.com/defi-hacks-net-half-billion-2023
https://defillama.com
https://chainsec.io/defi-hacks
https://docs.flashbots.net
https://explorer.forta.network
https://rekt.news
https://github.com/crytic/evm_cfg_builder
https://defiyield.app/rekt-database
https://forta.org/blog/how-fortas-predictive-ml-models-detect-_attacks-before-exploitation
https://forta.org/blog/how-fortas-predictive-ml-models-detect-_attacks-before-exploitation

22 B. Parhizkari et al.

20. Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam
Rinetzky, Mooly Sagiv, and Yoni Zohar. Online detection of effectively callback
free objects with applications to smart contracts. Proceedings of the ACM on
Programming Languages, 2(POPL):48, 2017.

21. Hui Han, Wen-Yuan Wang, and Bing-Huan Mao. Borderline-smote: a new over-
sampling method in imbalanced data sets learning. In International conference on
intelligent computing, pages 878–887. Springer, 2005.

22. Campbell R Harvey, Ashwin Ramachandran, and Joey Santoro. DeFi and the
Future of Finance. John Wiley & Sons, 2021.

23. Haibo He, Yang Bai, Edwardo A Garcia, and Shutao Li. Adasyn: Adaptive syn-
thetic sampling approach for imbalanced learning. In 2008 IEEE international
joint conference on neural networks (IEEE world congress on computational intel-
ligence), pages 1322–1328. Ieee, 2008.

24. Péter Hegedűs. Towards analyzing the complexity landscape of solidity based
ethereum smart contracts. In Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain, pages 35–39, 2018.

25. Alan Jović, Karla Brkić, and Nikola Bogunović. A review of feature selection
methods with applications. In 2015 38th international convention on information
and communication technology, electronics and microelectronics (MIPRO), pages
1200–1205. Ieee, 2015.

26. Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for
class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics,
Part B (Cybernetics), 39(2):539–550, 2008.

27. Scott M Lundberg and Su-In Lee. A unified approach to interpreting model pre-
dictions. Advances in neural information processing systems, 30, 2017.

28. Xingyu Lyu, Mengya Zhang, Xiaokuan Zhang, Jianyu Niu, Yinqian Zhang, and
Zhiqiang Lin. An empirical study on ethereum private transactions and the security
implications. arXiv preprint arXiv:2208.02858, 2022.

29. Tai D Nguyen, Long H Pham, and Jun Sun. sGuard: Towards Fixing Vulnerable
Smart Contracts Automatically. arXiv preprint arXiv:2101.01917, 2021.

30. Bahareh Parhizkari, Antonio Ken Iannillo, Christof Ferreira Torres, Sebastian
Banescu, Joseph Xu, and Radu State. Timely identification of victim addresses
in defi attacks. In International Workshop on Cryptocurrencies and Blockchain
Technology (CBT). Springer, 2023.

31. Manjula K Pawar, Prakashgoud Patil, Manisha Sharma, and Megha Chalageri. Se-
cure and scalable decentralized supply chain management using ethereum and ipfs
platform. In 2021 International Conference on Intelligent Technologies (CONIT),
pages 1–5. IEEE, 2021.

32. Daniel Perez and Benjamin Livshits. Smart contract vulnerabilities: Vulnerable
does not imply exploited. In 30th USENIX Security Symposium (USENIX Security
21), Vancouver, B.C., August 2021. USENIX Association.

33. Farimah Poursafaei, Ghaith Bany Hamad, and Zeljko Zilic. Detecting malicious
ethereum entities via application of machine learning classification. In 2020 2nd
Conference on Blockchain Research & Applications for Innovative Networks and
Services (BRAINS), pages 120–127. IEEE, 2020.

34. Kaihua Qin, Stefanos Chaliasos, Liyi Zhou, Benjamin Livshits, Dawn Song, and
Arthur Gervais. The blockchain imitation game. In 32nd USENIX Security Sym-
posium (USENIX Security 23), pages 3961–3978, Anaheim, CA, August 2023.
USENIX Association.

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 23

35. Abrar Rahman, Victor Shi, Matthew Ding, and Elliot Choi. Systematization of
knowledge: Synthetic assets, derivatives, and on-chain portfolio management. arXiv
preprint arXiv:2209.09958, 2022.

36. Lionel Rigaud. Detecting illicit ethereum accounts based on their transaction his-
tory. In The International Conference on Deep Learning, Big Data and Blockchain
(DBB 2022), volume 541, page 97. Springer Nature, 2022.

37. Michael Rodler, Wenting Li, Ghassan Karame, and Lucas Davi. Sereum: Protecting
existing smart contracts against re-entrancy attacks. In Proceedings of the Network
and Distributed System Security Symposium (NDSS’19), 2019.

38. Michael Rodler, Wenting Li, Ghassan Karame, and Lucas Davi. EVMPatch:
Timely and automated patching of ethereum smart contracts. In 30th USENIX
Security Symposium (USENIX Security ’21) [To be published], Vancouver, B.C.,
August 2021. USENIX Association.

39. Scikit-learn. Scikit-learn: Feature selection. https://scikitlearn.org/stable/
modules/feature_selection.html. Accessed Jan 20, 2024.

40. Liya Su, Xinyue Shen, Xiangyu Du, Xiaojing Liao, XiaoFeng Wang, Luyi Xing, and
Baoxu Liu. Evil under the sun: understanding and discovering attacks on ethereum
decentralized applications. In 30th USENIX Security Symposium (USENIX Secu-
rity 21), pages 1307–1324, 2021.

41. Will Warren and Amir Bandeali. 0x: An open protocol for decentralized exchange
on the ethereum blockchain. URl: https://github. com/0xProject/whitepaper, pages
04–18, 2017.

42. Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

43. Lei Wu, Siwei Wu, Yajin Zhou, Runhuai Li, Zhi Wang, Xiapu Luo, Cong Wang,
and Kui Ren. Ethscope: A transaction-centric security analytics framework to
detect malicious smart contracts on ethereum. arXiv preprint arXiv:2005.08278,
2020.

44. Jiahua Xu and Nikhil Vadgama. From banks to defi: the evolution of the lending
market. Enabling the Internet of Value: How Blockchain Connects Global Busi-
nesses, pages 53–66, 2022.

45. Xiao Liang Yu, Omar Al-Bataineh, David Lo, and Abhik Roychoudhury. Smart
Contract Repair. ACM Transactions on Software Engineering and Methodology
(TOSEM), 29(4):1–32, 2020.

46. Mengya Zhang, Xiaokuan Zhang, Yinqian Zhang, and Zhiqiang Lin. TXSPEC-
TOR: Uncovering attacks in ethereum from transactions. In 29th USENIX Secu-
rity Symposium (USENIX Security 20), pages 2775–2792. USENIX Association,
August 2020.

47. Yuyao Zhang, Siqi Ma, Juanru Li, Kailai Li, Surya Nepal, and Dawu Gu.
Smartshield: Automatic smart contract protection made easy. In 2020 IEEE
27th International Conference on Software Analysis, Evolution and Reengineering
(SANER), pages 23–34. IEEE, 2020.

48. Zhuo Zhang, Zhiqiang Lin, Marcelo Morales, Xiangyu Zhang, and Kaiyuan Zhang.
Your exploit is mine: Instantly synthesizing counterattack smart contract. In 32nd
USENIX Security Symposium (USENIX Security 23), pages 1757–1774, Anaheim,
CA, August 2023. USENIX Association.

49. Peilin Zheng, Zibin Zheng, Jiajing Wu, and Hong-Ning Dai. Xblock-eth: Extracting
and exploring blockchain data from ethereum. IEEE Open Journal of the Computer
Society, 1:95–106, 2020.

https://scikitlearn.org/stable/modules/feature_selection.html
https://scikitlearn.org/stable/modules/feature_selection.html

24 B. Parhizkari et al.

50. Zibin Zheng, Shaoan Xie, Hongning Dai, Xiangping Chen, and Huaimin Wang. An
overview of blockchain technology: Architecture, consensus, and future trends. In
2017 IEEE international congress on big data (BigData congress), pages 557–564.
Ieee, 2017.

51. Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, Zhipeng Wang,
Ye Wang, Kaihua Qin, Roger Wattenhofer, Dawn Song, and Arthur Gervais. Sok:
Decentralized finance (defi) attacks. In 2023 IEEE Symposium on Security and
Privacy (SP), pages 2444–2461. IEEE, 2023.

52. Shunfan Zhou, Zhemin Yang, Jie Xiang, Yinzhi Cao, Zhemin Yang, and Yuan
Zhang. An ever-evolving game: Evaluation of real-world attacks and defenses in
ethereum ecosystem. In 29th USENIX Security Symposium (USENIX Security 20),
pages 2793–2810. USENIX Association, August 2020.

A Comparing Oversampling Strategies

Figure 5 illustrates the comparison between three different oversampling tech-
niques and the solution without any oversampling. It is evident that even though
some oversampling techniques can maintain a lower FPR for TPR of 90% or
more, the approach with no oversampling yields the best results when keeping
the FPR low.

Fig. 5: Comparing the effectiveness of the model concerning different oversam-
pling techniques via ROC curve.

Beyond the Public Mempool: Catching DeFi Attacks Before They Happen 25

B Grid Search Hyperparameter Tuning

In hyperparameter tuning, we identify the optimal hyperparameters by tweaking
them systematically. One method for automated hyperparameter tuning is Grid
Search. Grid search involves defining a range of probable values for each hyper-
parameter and exhaustively exploring all combinations of these values. In our
model, we used Grid search hyperparameter tuning for three algorithms: MLP,
Random Forest, and XGBoost. The extensive results of this process are outlined
in Table 8

Table 8: This table highlights the results of performed grid search hyperparam-
eter tuning, along with the set of values evaluated for each hyperparameter. In
this table, ranges are defined as either a list of values or a linear representation
of a set of values. "linspace(a, b, c)" refers to a list of n values, evenly spaced
between a and b.

Algorithms Parameter Name Range of Selected
Hyperparameters Hyperparameters

MLP max_iter [100, 200, 500, 1000] 1000
MLP alpha linspace(0.0001, 0.05, 30) 0.0278
MLP activation [tanh, relu] tanh
MLP learning_rate [constant, adaptive] constant
MLP solver [sgd, adam] adam

Random Forest max_depth linspace(2, 12, 10) 8
Random Forest n_estimators [25,50,100] 50
Random Forest min_samples_split linspace(2, 10, 9) 3
Random Forest min_weight_fraction_leaf linspace(0, 0.5, 8) 0.5

XGBoost max_depth linspace(2, 12, 30) 6
XGBoost n_estimators [25,50,100] 100
XGBoost eta linspace(0, 0.5) 0.357
XGBoost subsample linspace(0.1, 0.9, 30) 0.475
XGBoost lambda linspace(0, 60, 30) 2

	Beyond the Public Mempool:Catching DeFi Attacks Before They Happen with Real-Time Smart Contract Analysis

