
Dependability Evaluation and Benchmarking of
Network Function Virtualization Infrastructures

Domenico Cotroneo, Luigi De Simone, Antonio Ken Iannillo, Anna Lanzaro, Roberto Natella
Critiware s.r.l. / Federico II University of Naples, Italy

{cotroneo, luigi.desimone, antonioken.iannillo, anna.lanzaro, roberto.natella}@unina.it

©978-1-4799-7899-1/15/$31.00 ©2015 IEEE

Abstract—Network Function Virtualization (NFV) is an
emerging solution that aims at improving the flexibility, the
efficiency and the manageability of networks, by leveraging
virtualization and cloud computing technologies to run network
appliances in software. However, the “softwarization” of network
functions raises reliability concerns, as they will be exposed to
faults in commodity hardware and software components. In this
paper, we propose a methodology for the dependability evaluation
and benchmarking of NFV Infrastructures (NFVIs), based on
fault injection. We discuss the application of the methodology in
the context of a virtualized IP Multimedia Subsystem (IMS), and
the pitfalls in the design of a reliable NFVI.

Keywords—NFV; NFVI; Fault Injection; Cloud Computing;

Virtualization; Dependability Benchmarking; Certification

I. INTRODUCTION

Network Function Virtualization (NFV) [1], [2] is an
emerging solution to supersede traditional network equipment
to reduce costs, improve manageability, reduce time-to-market,
and provide more advanced services [3]. NFV will exploit
IT virtualization technologies to turn network equipment into
Virtualized Network Functions (VNFs) that will be imple-
mented in software, and will run on commodity hardware,
virtualization and cloud computing technologies located in
high-performance data centers, namely Network Function Vir-
tualization Infrastructures (NFVIs).

This scenario imposes on NFVIs stringent performance and
reliability requirements inherited from telecom applications,
that are even more demanding than existing IT cloud sys-
tems: telecom workloads will require extremely low packet
processing overheads, controlled latency, and efficient virtual
switching, along with automatic recovery from faults and
extremely high availability (99.99% or higher).

It can be easily seen that the “softwarization” of network
functions raises performance and reliability concerns. NFVIs
should be able to achieve resiliency in spite of faults occurring
within them, such as hardware, software and configuration
faults. The incidence of these faults is expected to be high,
due to the large scale and complexity of data centers hosting
the NFVI, and due to the massive adoption of several off-
the-shelf hardware and software components: while these
components are easily procured and replaceable, NFVIs will
need to recover from faulty components in a timely way while
preserving high network performance.

In this paper, we propose an experimental methodology
for the dependability evaluation and benchmarking of NFVIs,

based on fault injection. Characterizing and certifying the
reliability of cloud computing systems, including NFV, is a
high-priority issue for telecom operators, service providers
and the user community, as demonstrated by recent initiatives
encouraging the development of proof-of-concepts, best prac-
tices, test suites and benchmarks to assure cloud resiliency [4].
The proposed methodology includes both measures for char-
acterizing performance and dependability, and the procedure
and conditions under which these measures can be obtained.
It is aimed to build confidence in the reliability of NFVIs, to
highlight its weak points, and to provide practical guidance
for designers. We apply the methodology in the context of
a virtualized IP Multimedia Subsystem (IMS), deployed using
commodity hardware and VMware virtualization technologies.
In this case study, we evaluate the impact of faults on perfor-
mance and reliability, analyze the sensitivity to different faulty
components and fault types, and point out the pitfalls that can
be incurred in the design of a reliable NFVI.

The paper is organized as follows. In section II, we provide
background on dependability issues and prospective solutions
for NFVIs. In section III, we describe in detail the proposed
methodology for dependability evaluation and benchmarking.
Section IV presents the IMS case study. Section V discusses
related work, and section VI closes the paper.

II. BACKGROUND ON NFVI RELIABILITY

The NFV ISG identified use cases, requirements and archi-
tectures that will serve as a reference for the emerging NFV
technologies. In particular, strict reliability requirements are
demanded by customers and government regulations in the
telecom domain [5], [6]. It is expected that virtualized network
function will be able to assure comparable, or even superior
reliability than traditional networks.

The prospective NFVI requirements and architecture, cur-
rently being defined by the ETSI [6], and presented in this
section, includes fault tolerance mechanisms that will be
adopted in the emerging NFVIs. According to these design
principles, NFVI fault tolerance mechanisms will include fault
detection, fault localization, and fault recovery (Fig. 1).

Fault Detection mechanisms of the NFVI are aimed at
noticing the failure of a component (such as a VM or a node)
as soon as the failure occurs, in order to timely start the fault
treatment process. Fault detection mechanisms will be running
in NFVI components (including hardware, hypervisors, guest
OSes, and VNFs), and will interact with the NFV Management
and Orchestration (NFV-MANO) of the NFVI during the fault
treatment process. Fault detection involves (Fig. 2):

Recovery!

VNF!
VNF

Failure!

Fault!
detectors!

NFVI-MANO!

VNF replica!

Virtualization!
Infrastructure

Mngt.!

Detection!

Fault detection mechanisms (e.g., watchdogs,
heartbeats, error checks) issue fault notifications!
The NFVI-MANO collects notifications, locates the
faulty VNF, and controls recovery actions!

The Virtualization Infrastructure Manager performs
recovery actions (e.g., VM replication and migration)!

A VNF (or its hosting machine) fails!

The VNF is again available!

Fig. 1. Overview of fault tolerance in NFVIs.

• Redundant checks over data and control flow within
software components. For instance, a hypervisor can
check the status of CPU, memory, and I/O devices
(e.g., I/O errors, parity errors, temperature warnings),
and notify any error status that it detects. In the same
way, VNFs can also perform end-to-end checks over
protocol data, and collect and forward fault notifi-
cations produced by the underlying layers (e.g., the
hypervisor or the guest OS).

• Watchdog components within the hypervisor and
within VMs, that will check the “liveness” of com-
ponents running on virtual and physical CPUs. The
watchdog embeds a timer (either physical or virtual)
that is periodically reset by a software routine; if a
fault affects a virtual or physical CPU (thus, stopping
its execution), then the timer will eventually trigger a
fault notification and a recovery routine.

• Heartbeat components that check the health of other
components, by periodically polling their status. A
failure is detected if, for instance, a monitored com-
ponent does not respond to status requests from the
heartbeat component.

• Performance monitors, which analyze performance
metrics such as resource consumption and system
throughput and latency. For instance, a fault is detected
if the throughput falls below a threshold.

NFVI%

VM#

VNF#

Hardware#
Heartbeats(

NFV$Management$&$
Orchestra2on$

Virtualiza2on$
Infrastructure$
Manager$

Fault Notifications

Health Checks Faults%

Hypervisor#

Performance(
monitor(

Data/control(
flow(checks(

Watchdog(

Guest#OS#
Watchdog(

Data/control(
flow(checks(

Hardware#

Hypervisor#

VM#

Guest#OS#

VNF#

Failover

Re-
config

Fig. 2. Fault tolerance mechanisms in NFVIs.

Fault Localization mechanisms identify which compo-
nents, among all components in the NFVI, have failed. It is
important to note that even a single fault within the NFVI can
cause cascading failures in one or more components, causing
several fault notifications across the NFVIs (for example, a low
memory condition in a physical machine could lead to several
faults at the application level). Therefore, fault localization has
to go back to the root cause of failures, in order to avoid

unnecessary and/or incorrect recovery actions that would slow
down or hamper recovery.

To locate faults, fault correlators are deployed across the
NFVI (either locally on the hosts, or remotely in the NFVI-
MANO) to collect and analyze failure information from NFVI
components. Fault correlators will adopt correlation rules and
fault precedence graphs defined by system administrators. By
taking advantage of information collected from the NFVI (such
as, guest OS logs or hypervisor logs collected at the time of
a crash), fault correlators will be able to identify which kind
of failure occurred. In turn, fault localization is followed by
the selection and activation of a recovery action appropriate
for the faulty component.

Fault Recovery mechanisms of the NFVI will perform a
recovery action to remediate to the faulty component. Recovery
actions for NFVIs (see Fig. 2) include the activation of VNFs
replicas and of their VMs, and their migration to different
hosts, by leveraging a Virtualization Infrastructure Manager to
implement these actions. Moreover, VNFs and physical hosts
can be reconfigured to mask a fault (for instance, by updating a
virtual network configuration, by deactivating a faulty network
interface card, or by retrying a failed operation). The recovery
action can succeed or not, depending on the ability of the
VNF and of the hypervisor to maintain a consistent state after
the recovery action (i.e., the VNF is able to work correctly
after recovery). A fault is successfully recovered if the time-
to-recovery is below a maximum allowed time, which depends
on the type and criticality of a VNF, ranging from few seconds
(e.g., 5 seconds) in the most critical scenarios, to tenths
of seconds (e.g., 25 seconds) in the less critical scenarios.
Moreover, it is required that VNF performance after recovery
should be comparable to the performance of VNFs before the
occurrence of a fault.

Given the complexity of this fault management process, it
becomes important to get confidence that NFVIs can achieve
its strict performance and reliability requirements, which is the
goal of the experimental approach proposed in this work.

III. METHODOLOGY

We propose an experimental methodology for evaluating
and benchmarking performance and reliability of NFVIs in
the presence of faults. The proposed methodology is based on
fault injection, that is, the deliberate introduction of faults in
a system during its execution [7]. The methodology includes
three parts, that are summarized in Fig. 3.

The first part consists in the definition of key performance
indicators (KPIs), the faultload (i.e., a set of faults to inject
in the NFVI) and the workload (i.e., inputs to submit to
the NFVI) that will support the experimental evaluation of
an NFVI. Based on these elements, the second part of the
methodology consists in the execution of a sequence of fault
injection experiments. In each fault injection experiment, the
NFVI under evaluation is first configured, by deploying a set
of VNFs to exercise the NFVI; then, the workload is submitted
to the VNFs running on the NFVI and, during their execution,
faults are injected; at the end of the execution, performance
and failure data are collected from the target NFVI; then,
the experimental testbed is cleaned-up (e.g., by un-deploying
VNFs) before starting the next experiment. This process is

Deployment
of VNFs over

the NFVI
Workload and VNFs

execution
Data

collection
Testbed
clean-

up
... ...

Injection of the i-th fault

Definition of
workload,

faultload, and
KPIs

Fault Injection
Experiments

Computation of
KPIs and
reporting

Fig. 3. Overview of dependability evaluation methodology.

repeated several times, by injecting a different fault at each
fault injection experiment (while using the same workload
and collecting the same performance and failure metrics). The
execution of fault injection experiments can be supported by
automated tools for configuring virtualization infrastructures,
for generating network workloads, and for injecting faults.
Finally, performance and failure data from all experiments are
processed to compute KPIs, and to support the identification
of performance/dependability bottlenecks in the target NFVI.

In the following, we first present KPIs for performance
and dependability of NFVIs, and then discuss the faultload
and workload of fault injection experiments in NFVIs.

A. Key Performance Indicators

To evaluate performance and dependability of an NFVI, we
consider the quality of service as perceived by its users. First,
we define metrics for evaluating performance of an NFVI,
which will be based on the responsiveness of VNFs running on
the NFVI (referred to as VNF latency and VNF throughput).
It is important to note that, while latency and throughput are
widely adopted for characterizing performance of several types
of systems, we specifically consider latency and throughput
in the presence of faults. In fact, it can be expected that
performance will degrade in the presence of faults, in terms of
higher latency and/or lower throughput, since less resources
will be available (due to the failure of components in the
NFVI) and since the fault treatment process requires time (at
least few seconds in the case of automated recovery, and up
to several hours in the case of manual recovery), as discussed
in section II. Thus, we introduce latency and throughput KPIs
for NFVIs to quantify the impact of faults on performance,
and evaluate whether the impact is too strong to be neglected.

Later in this section, we also discuss additional metrics
related to the availability of NFVIs from the perspective
of end-users. In fact, another likely impact of faults is the
unavailability of VNFs, leading to the loss or the rejection of
network traffic, in terms of incoming packets or requests that
will not processed by VNFs. To analyze these effects in fault
injection experiments, we include the experimental availability
among the KPIs. Finally, at the end of this subsection we
define the risk score of an NFVI, which provides a concise
evaluation of NFVIs based on performance and dependability
KPIs previously mentioned.

1) VNF Latency and Throughput: In general terms, net-
work latency is the delay that a message “takes to travel from
one end of a network to another” [8]. A similar notion can
also be applied to network traffic passing through a VNF, or,

VNF!
VNF!

VNF!

VNF!

Virtualization Layer!

Off-The-Shelf
hardware and

software!

End
points!

VNF Latency and Throughput!

treq
i,e

tres
i,e

Fault
Injection!

End
points!End
points!

Fig. 4. VNF Latency and Throughput.

more generally, through a network of interconnected VNFs
(represented by a VNF graph [9], see Fig. 4). The VNF latency
is the time required by a network of VNFs to process incoming
traffic, which can be evaluated by measuring the time between
a unit of traffic (such as a packet or a service request) enters
the network of VNFs, and the time at which the processing
of that unit of traffic is completed (e.g., a packet is routed
to a destination after inspection, and leaves the VNFs; or, a
response is provided to the source of a request).

Latency will be characterized by the empirical cumulative
distribution function (CDF) of traffic processing times, and by
considering the percentiles from this distribution. We denote
the CDF by F

le(x) = P (l

e

< x), where l

e

is the latency
of a traffic unit in the fault injection experiment e. In turn,
l

e

= t

res
e

� t

req
e

, where t

req
e

and t

res
e

refer to the time
of a request and of its response, respectively.

Fig. 5 shows an example of latency distribution. In partic-
ular, we consider the 50th and the 90th percentiles of the CDF
(i.e., F

le(50) and F

le(90)), which are adopted to characterize
the average and the worst-case performance of telecommu-
nication systems [10]. In the example, three scenarios are
shown, with three cumulative distributions: (i) latency in fault-
free conditions, (ii) latency in faulty conditions, in which the
network is still providing good performance, and (iii) latency in
faulty conditions, in which performance is severely degraded.
The 50th and the 90th percentiles are compared to reference
values for these percentiles, which specify the maximum
allowed value of the percentile for an acceptable quality of
service (for instance, reference values can be imposed by
service level agreements). In Fig. 5, the maximum allowed
values are 150ms for the 50th percentile, and 250ms for the
90th percentile. Both values are exceeded in the faulty scenario
with performance degradation; in such a case, the NFVI is not
able to properly mask faults to its users.

In a similar way, the VNF throughput considers the rate at
which traffic units are successfully processed, e.g., processed
packets or requests per second, in the presence of faults. VNF
throughput represents the average throughput of VNFs along
an experiment: it can be computed by dividing the total number
N of traffic units (i.e., all traffic processed during an experi-
ment e) by the total time that the system spent to process all the
requests, that is, N/(max

i

(t

res
e,i

)�min

i

(t

req
e,i

)). Again, the
VNF throughput is evaluated in the presence of injected faults.
The measured VNF throughput can be compared to a reference

0!
10!
20!
30!
40!
50!
60!
70!
80!
90!

100!

0! 50! 100!150!200!250!300!350!400!

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)!

 Latency (ms)!

 Fault-free!

 Faulty, not degraded!

 Faulty, degraded!

90th percentiles!

50th percentiles!

Gap from reference value!

Fig. 5. Examples of VNF Latency distributions

value, such as the VNF throughput in fault-free conditions,
or the expected VNF throughput imposed by service level
agreements.

To compute VNF latency and throughput, the end-points
(Fig. 4) should record, for each unit of traffic i, its t

req
e,i

and t

res
e,i

. The role of end-points is taken on by a workload
generator, that is, a tool acting as user of the VNFs by
submitting traffic to them, listening for replies, and computing
performance measures based on these data. This aspect is
further discussed later in this section.

2) Experimental Availability: Availability is a key aspect
of quality of service. According to the TL 9000 definition
for telecommunication systems [10], [11], availability is “the
ability of a unit to be in a state ready to perform a required
function at a given instant in time”. The NFVI and its VNFs
can become unavailable because of faulty components, causing
service disruptions such as user-perceived outages, data losses
and corruptions. The impact of faults on the NFVI can be
mitigated through fault tolerance mechanisms and algorithms.
Our dependability evaluation methodology deliberately injects
faults into the NFVI, in order to evaluate whether the NFVI
is able to maintain or to quickly restore availability.

It must be noted that, in general, availability cannot be
predicted in probabilistic terms by the sole application of fault
injection. Fault injection specifically focuses on evaluating the
reaction of a system given that a fault already occurred. The
availability also depends on the probability of occurrence of
faults, which relies on other factors beyond the possibilities
of fault injection and of our evaluation methodology, such as
the reliability of individual components. For this reason, we
evaluate the experimental availability, that is, the ability of an
NFVI to be available when a fault is present in the NFVI. The
availability of NFVI can be predicted by other means through
the combination of the experimental availability along with
other parameters, such as the probability of faults [7].

Experimental availability is defined as the percentage of
traffic units that are successfully processed during a fault
injection experiment (see Fig. 6), such as the percentage of
packets or requests neither lost nor corrupted. It is obtained by
dividing the number of successful requests r

success
e

(e.g.,
requests followed by a correct reply) over the total number of
requests r

e

during an experiment e, that is, |rsuccess
e

|/|r
e

|.
To compute experimental availability, end-points need to track

VNF!
VNF!

VNF!

VNF!

Virtualization Layer!

Off-The-Shelf
hardware and

software!

End
points!

Experimental
availability!

Fault
Injection!

End
points!End
points!

Fig. 6. Experimental availability

VNF request failures, which are typically denoted by error
notifications sent to users, and by the lack of responses within
a maximum allowed time (i.e., a timeout).

3) Risk Score: The Risk Score (RS) provides a brief and
concise measure of the impact of faults within the NFVI,
such as the risk of experiencing service unavailability and
performance failures. We take into account several factors in
the evaluation of risk, including: (i) the type of service and
its criticality (in terms of number of users and importance
of the service for the users), (ii) the impact of faults on the
service as perceived by the end-users (e.g., faults can turn, in
the best case, into negligible performance degradation or, in
the worst case, into service unavailability), and (iii) the relative
frequency of occurrence of faults. The Risk Score summarizes
these factors, to provide an indication of risk for system
designers, and to guide further analysis and improvements. In
particular, the higher is the RS, the higher is the risk of service
failures and, consequently, the worse is the capability of the
underlying NFVI infrastructure to tolerate faults and assure
service availability.

The Risk Score is a weighted sum of the number of service
failures in fault injection experiments. It is defined as:

RS =

NP
i=1

P

i

MP
j=1

C

j

Fi,j

Ei

where N different types of faults are injected, and M different
types of service failures can be observed. For NFVIs, it is
important to consider both performance degradation (sec-
tion III-A1) and service unavailability (section III-A2) failures.
Therefore, in the following, we will assume M = 2, and:

• F

i,1 = number of performance degradation failures
(j = 1) under fault type i;

• F

i,2 = number of service unavailability failures (j =

2) under fault type i.

Moreover, E

i

represents the number of fault injection
experiments in which the fault type i has been injected. For
instance, consider a hypothetical case where N = 2, and:

• E1 = 10 (i.e., 10 experiments are performed using
fault type i = 1), where F1,1 = 2 experiments
experienced a performance degradation, F1,2 = 3 ex-
periments experienced a service unavailability failure,
and 5 experiments did not experience any failure;

• E2 = 10 (i.e., 10 experiments are performed using
fault type i = 2), where F2,1 = 3 experiments

experienced a performance degradation, F2,2 = 4 ex-
periments experienced a service unavailability failure,
and 3 experiments did not experience any failure.

In the weighted sum, 0 C

j

 1 is a weight that
represents the severity of the failure type j, which depends
on the impact of the failure in terms of business loss, number
of affected users, and cost of recovery. We assume:

• C1 = 0.2 for performance degradation failures;

• C2 = 1 for service unavailability failures.

P

i

is the relative importance of the fault type i, with 0
P

j

 1 and
P

j

P

j

= 1. When all faults have a low probability
of occurrence, and when no apriori information is available
about their relative frequency, then their weights can be set
to the same value (i.e., P

i

= 1/N for each i). These weights
can be tuned using failure data for the NFVI if available (i.e.,
data obtained by analyzing failures occurring in production),
for instance, by assigning a higher weight to the most frequent
fault types.

In this hypothetical example, we have:

RS = 0.5 ·
✓
0.2 · 2

10

+ 1 · 3

10

◆
+ 0.5 ·

✓
0.2 · 3

10

+ 1 · 4

10

◆

= 0.5 · 0.34 + 0.5 · 0.46 = 0.4 = 40%

that is, there is a 40% risk of experiencing a service failure
(either a performance degradation or unavailability) in the
presence of a fault. In such a case, the exposure of VNFs
to NFVI failures could not be neglected!

To compute F

i,j

, we need to count the number of failures
F

i,j

for each fault type i and for each failure type j. Fail-
ures should be identified by end-points that generate service
requests and collect responses during the experiments:

• Performance Degradation failure: both the 50th and
the 90th percentiles of VNF latency are respectively
more than two thresholds T50 and T90. In such a case,
faults have a significant impact both on the average
and worst case duration of network processing.

• Service Unavailability failure: the experimental avail-
ability is lower than a threshold T

out

, that is, faults
affect an unacceptably high number of requests.

In this case, T50 and T90 are latency thresholds (with
T50 < T90), and T

out

is a percentage threshold on requests.
Alternatively, VNF throughput can be considered instead of,
or along with, VNF latency. The thresholds depend on the type
of service, service level agreements, and users’ expectations.

Finally, given the envisioned scenarios for NFVI [6], we
must consider the case in which the NFVI hosts more than one
service at a time. For instance, the NFVI could be used for
the deployment of three services, such as video call, voice call,
and emergency communication services. In this case, the Risk
Score for the NFVI can be obtained by first computing the Risk
Score for each individual service, and then by aggregating the
three Risk Scores of the services with the formula:

RS

NFV I

=

SP
s=1

W

s

RS

s

�
SP

s=1
W

s

Network frame receive/transmit

Corruption Drop Delay

Host VM Host VM Host VM

Storage block reads/write

Corruption Drop Delay

Host VM Host VM Host VM

I/O faults

Compute faults

Hogs Crash Code corruption Data corruption

CPU Memory Host VM Host VM Host VM

Fig. 7. Faultload for the dependability evaluation of NFVIs.

where S is the number of services (for instance, S = 3 repre-
sents three services), and W

s

represents the relative importance
of service s. For instance, if emergency communication (s = 1)
is ten times more important of voice and video calls (s = 2

and s = 3), we may have W1 = 10, and W2 = W3 = 1.

B. Fault Model

As discussed later in section V, fault injection in dis-
tributed systems encompasses two main fault categories: faults
affecting I/O components (e.g., virtual network and storage),
and faults affecting computational components (e.g., virtual
CPUs and virtual memory). Faults in virtualized infrastructures
(including hardware faults in OTS equipment, and software
and configuration faults in the virtualization layer) mostly
manifest as disruptions in I/O traffic (e.g., the transient loss or
corruption of network packets, or the permanent unavailability
of a network interface) and erratic behavior of the CPU and
memory subsystems (in particular, corruption of instructions
and data in memory and registers, crashes of VMs and physical
nodes, and resource leaks).

These types of faults can be injected by emulating their ef-
fects on the virtualization layer. In particular, I/O and Compute
faults (Fig. 7) can be emulated, respectively, by deliberately
injecting I/O losses, corruptions and delays, and by injecting
code and data corruptions, by forcing the termination of VMs
and of their hosting nodes, and by introducing CPU and
memory “hogs” (i.e., tasks that deliberately consume CPU
cycles and allocate memory areas in order to cause resource
exhaustion). Faults can be injected either in a specific VM
(e.g., traffic from/to a VM), or in an NFVI node (affecting the
hypervisor and all VMs deployed on the node).

These types of faults can be injected in a transient, in-
termittent, and permanent way to emulate different scenarios.
The injection of transient faults (e.g., affecting an individual
I/O transfer) can emulate temporary faults, such as failed
reads/writes due to bad disk sectors or electromagnetic inter-
ferences. The injection of intermittent (i.e., periodical) faults
can emulate temporary, but recurrent, faults, such as I/O errors
due to worn-out connectors and/or partially damaged hardware
interfaces. The injection of permanent faults can emulate faults
that persist for a long period of time, such as unavailable
hardware interfaces. We have implemented these faults in a
prototype fault injection tool for virtualization infrastructures
(currently supporting VMware ESXi and Linux containers),

by using loadable kernel modules to inject losses, delays,
corruptions, and leaks.

C. Workload

During fault injection tests, the NFVI has to be exercised
using a workload. In order to obtain reasonable and realistic
results from fault injection, these workloads should reflect the
workloads that VNFs will face in production: in this way, the
experiments will provide a realistic picture of performance and
dependability of the NFVI. Realistic workloads are typically
generated using load generators and performance benchmark-
ing tools. Our dependability benchmarking methodology is not
tied to a specific choice of workload. Moreover, the selection
of a workload mostly depends on the kind of VNFs that are
hosted on the NFVI. For these reason, we refer the reader to
existing network performance benchmarks and network load
generators. Suitable examples of workloads for NFVIs are
represented by performance benchmarks specifically designed
for cloud computing systems [12], [13], [14], and by network
load testing tools such as Netperf [15].

IV. CASE STUDY

To show the application of the dependability evaluation
methodology, we perform an experimental analysis of a virtual-
ized IP Multimedia Subsystem (IMS) deployed over an NFVI.
The goal of this analysis is to provide examples of results that
can be obtained from fault injection. We consider a commercial
virtualization platform (the VMware ESXi hypervisor) running
real-world, open-source NFV software. In these experiments,
we adopt fault injection to analyze:

• whether degradations/outages are more frequent or
more severe than reasonable limits;

• the impact of different types of faults, to identify the
faults to which the NFVI is most vulnerable;

• the impact of different faulty component, to find the
components to which the NFVI is most sensitive.

A. NFVI Testbed

The experimental setup consists in an NFVI, whose fault
tolerance is going to be evaluated, along with the VNFs that
will be deployed on the NFVI. The NFVI testbed is depicted
in Figure 8, and consists of:

• Host 1 (Fault Injection Target): a workstation equipped
with an Intel Xeon 4-core 3.70GHz CPU, 8 GB of
RAM, and the VMware ESXi hypervisor. It hosts VMs
running the VNFs of our case study (see section IV-B).
It is instrumented with the fault injection tool.

• Host 2: a workstation with the same hardware and
hypervisor of Host 1, and hosting VM replicas of the
VNFs.

• Tester Host: a Linux-based computer that hosts a
workload generator, and tools for managing the ex-
periments by orchestrating the deployment of VNFs,
by controlling the fault injection tool, and by collect-
ing performance and failure data from the workload
generator and from the NFVI.

cassandra

remote

iSCSI

disk

Tester Host

Bono-2
(P-CSCF)

Sprout-2
(S-CSFC)

Ralf-2
(Rf CTF)

Homer-2
(XDMS)

Homestead-2
(HSS Mirror)

ESXi Host 2

Replicas

communication

Virtual Network Functions

Bono-1
(P-CSCF)

Sprout-1
(S-CSFC)

Ralf-1
(Rf CTF)

Virtual Network Functions

Homer-1
(XDMS)

Homestead-1
(HSS Mirror)

ESXi Host 1

(fault injection

target)

Name,

Time and

Storage

Server

LEGEND

server

virtual machine

disk

disk partition

switch

SIP REGISTER

SIP INVITE

SIP UPDATE

SIP BYE

SIP REGISTER

SIP INVITE

SIP UPDATE

SIP BYE

Fig. 8. The NFVI testbed, running an IP Multimedia Subsystem.

• Name, Time and Storage Server: a workstation hosting
services (DNS, NTP, iSCSI) to support the execution
of VNFs.

• A Gigabit Ethernet LAN connecting all the machines.

B. Virtual Network Functions

The VNFs running on the NFVI under evaluation are from
the Clearwater project [16], [17], which is an open-source
implementation of an IMS for cloud computing platforms.
Figure 8 shows the components of the Clearwater IMS that
are deployed on the NFVI testbed. They are:

• Bono: the SIP edge proxy, which provides both SIP
IMS Gm and WebRTC interfaces to clients.

• Sprout: the SIP registrar and authoritative routing
proxy, and handles client authentication.

• Homestead: component for retrieving authentication
credentials and user profile information.

• Homer: XML Document Management Server that
stores MMTEL service settings for each user.

• Ralf : component that provides billing services.

The workload consists of the set-up of several SIP sessions
(calls) between end-users of the IMS. A SIP session includes
requests for registering, inviting other users, updating the
session and terminating the session. This workload is generated
by SIPp [18], an open-source tool for load testing of SIP
systems. A single experiment exercises the IMS by simulating
200 users and 100 calls.

We will consider a high-availability set-up, in which each
VNF is actively replicated across the hosts (Fig. 8). The VNFs
in Clearwater are designed to be stateless and to be horizontally
scalable, in order to load-balance the SIP messages between
the replicas using round-robin DNS. Later on, we extend the
testbed with additional fault-tolerance capability provided by
VMware vSphere (namely, HA cluster [19]), which automat-
ically migrates and/or restarts VMs to recover from overload
and crash failures.

C. Fault Injection Test Plan

Faults will be injected in the Host 1, and on VNF replicas
running on that node. As discussed in section III-B, we
consider both I/O and compute faults, and both intermittent
and permanent faults. Network frame corruptions, drops, and
delays will be injected in the host, and on the Sprout VNF.
The only VNFs that use remote storage (iSCSI) are Homer and
Homestead; to emulate storage faults, we will inject network
faults in the iSCSI traffic generated by Homestead. Moreover,
experiments will include compute faults such as CPU/memory
hogs, host/VM crashes, and code/data corruptions at the VM
and at the host level. Three repeated experiments will be
performed for each type of fault, for a total of 93 fault injection
experiments.

D. Experimental analysis

Using performance and failure data from the experiments
(in particular, the logs of the workload generator), we first
analyze the experimental availability in the presence of faults,
which is obtained from the percentage of SIP requests success-
fully processed by the IMS. Table I provides the experimental
availability for different subsets of experiments, and the aver-
age for all fault injection experiments.

TABLE I. EXPERIMENTAL AVAILABILITY, FOR DIFFERENT GROUPS OF
FAULT INJECTION EXPERIMENTS.

hhhhhhhhhhFault Type
Fault Target Sprout Homestead ESXi host Average

Compute faults 8.01% 39.67% 59.19% 35.62%
I/O faults 48.29% 82.40% 70.67% 67.12%
Average 28.15% 61.03% 64.93% 51.37%

The table shows that the average request success rate is
51.37% in the presence of faults. By looking more in detail
at the fault types (i.e., by dividing the data between I/O faults
and Compute faults, and separately analyzing the two sets),
we observe that Compute faults have a stronger impact on
availability (35.62%, lower than the average) than I/O faults
(67.12%, higher than the average). This points out that, while it
is important to have redundant and reliable devices to prevent
I/O faults, it is even more important to introduce additional
resources to mitigate CPU and memory faults, including more
VM instances and physical CPUs to compensate for faulty
ones, and to perform real-time monitoring of CPU and memory
usage for the timely detection of faults.

We also analyze how the experimental availability of the
NFVI is influenced by the location of faults. To this aim, we
separately analyzed availability by dividing the data between
faults injected in Sprout, faults injected in Homestead, and
faults injected in the physical host. We found that the injected
VNF has even more impact than the type of faults. In the
case of Sprout faults, the success rate significantly decreases
(28.15%, much lower than the average); the success rate is
influenced to a lower degree by faults in Homestead and in the
host (61.03% and 64.93%, higher than the average). This can
be explained by the pivotal role of Sprout in the architecture
of Clearwater, since this component acts as registrar, router,
and handles client authentication. It is advisable to introduce
special fault tolerance mechanisms and policies for this VM,
for instance by providing more replicas, by transparently

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

100%!

1! 10! 100! 1000! 10000!

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
(%

)!

Latency (ms) - Logarithmic scale!

Faulty Homestead VNF!
Faulty Sprout VNF!
Faulty ESXi Host!
Fault-free!

T 5
0=
15
0m

s!

T 9
0=
25
0m

s!

(a) By targeted NFVI component

0%!

10%!

20%!

30%!

40%!

50%!

60%!

70%!

80%!

90%!

100%!

1! 10! 100! 1000! 10000!

Cu
m

ul
at

iv
e

Di
st

rib
ut

io
n

(%
)!

Latency (ms) - Logarithmic scale!

I/O faults!
Compute faults!
Fault-free!

T 5
0=
15
0m

s!

T 9
0=
25
0m

s!

(b) By type of injected faults

Fig. 9. Cumulative distribution of latency.

balancing the load among replicas, and automatic recovery
(such as VM restarts).

We then analyze the SIP request latency in the presence
of faults. In fact, SIP request failures were not the only effect
of faults. We also found that, even if some requests succeed,
they can take much more time than normal to complete.
Fig. 9 shows this behavior, in which we report the cumulative
distribution of service latency, by dividing the data respectively
by target component and by type of injected faults. In both
cases, we observe that the latency increases only by a moderate
amount in the average case, which is represented by the 50th
percentile of the CDFs, and remains below 150ms. Instead,
the latency significantly increases in the worst case, which
is represented by the 90th percentile of the CDF: The latency
increases by an order of magnitude, as 10% of the SIP requests
take several seconds to be processed. This is a results of the
reduced amount of resources that is caused by the injection of
faults. This result means that, on the one hand, that faults in
the NFVIs can also turn into performance degradation, and that
this kind of behavior needs to be studied and prevented; on the
other hand, this result suggests that performance monitoring
(e.g., using internal and/or external heartbeat mechanisms, and
analyzing performance logs) at the service level is critical to
assure a high coverage of fault detection, localization, and
recovery.

From data on experimental availability and latency, we
identified performance degradation and service unavailability
failures, and computed the risk score for the NFVI, which is
shown in the TABLE II. The overall risk score (55%) is quite
high and reflects the strong impact that faults have on experi-
mental availability (TABLE I): as before, there is a high risk
of service outages, especially in the case of Compute faults.
This result points out that the NFVI under evaluation is not
sufficiently fault-tolerant, and that fault tolerance mechanisms
need to be carefully improved to lower the risk of failures.
We remark that this result confirms the strong need for fault
injection when dealing with complex architectures such as
NFVIs. In fact, the effectiveness of fault tolerance mechanisms
is very dependent on the actual configuration chosen by NFVI
designers and administrators. Unfortunately, modern virtual-
ization platforms are quite complex technologies, requiring
many design choices concerning the placement of VMs across
physical nodes, the topology of virtual networks and storage,
the allocation of virtual CPU and memory for VMs, and so on.
The problem is exacerbated by the issues behind development
and testing of fault-tolerant distributed applications, such as
the IMS that we have considered. In our specific case, after
a detailed analysis of experiment logs, we found that the low
experimental availability was due to a capacity planning issue:
once a VNF on Host 1 fails (because of fault injection), the
SIP traffic is forwarded to a replica of the VNF on Host 2,
but the capacity of the VNF was not enough to handle all SIP
traffic, causing the failure of many SIP requests.

TABLE II. RISK SCORE.
hhhhhhhhhhFault Type

Fault Target Sprout Homestead ESXi host All targets

Compute faults 100% 100% 47% 67%
I/O faults 68% 58% 37% 48%
All faults 79% 69% 38% 55%

The problem of designing a reliable NFVI is even more
evident if we consider what happens to the IMS after in-
troducing additional fault tolerance mechanisms. We enabled
the VMware HA cluster capability, in order to mask the
failure of VNFs by automatically migrating and restarting VMs
after a crash or an overload. We then performed the fault
injection experiments a second time, but we did not obtained
a significant improvement of the experimental availability and
of the risk score. In fact, the automatic migration and restart
of VMs proved to be too slow and does not achieve an
acceptable availability. Fig. 10 shows this behavior, in which
we depict the network activity of the Sprout VNF respectively
in fault-free and in two faulty runs (with and without the HA
cluster capability, respectively) over a period of 5 minutes
(the duration of an experiment). A VM crash is injected at
time 100: when HA cluster is disabled, the Sprout VNF is
no more active after the crash; when HA cluster is enabled,
the VNF is automatically restored at time 160. Unfortunately,
60 seconds are too much to guarantee a quick recovery and
a high availability. This result suggests to pay more efforts
towards improving the boot time of the VM, and to increase the
capacity of the nodes to speed-up the recovery process. Again,
we remark that a careful fault injection experimentation is
required to guide designers towards a reliable and performant
NFVI.

0"

500"

1000"

1500"

2000"

2500"

0" 20" 40" 60" 80" 100" 120" 140" 160" 180" 200" 220" 240" 260" 280" 300"

Time%(s)%

Sprout:"Tx"plus"Rx"Packets""

Faulty,"load"balancing" Faulty,"HA"cluster" FaultEfree"

Fig. 10. Network throughput during the injection of a VNF crash.

V. RELATED WORK

Dependability benchmarking is a general framework for
comparing the dependability of computer systems in the pres-
ence of faults [20]. A key aspect of dependability benchmark-
ing, which makes it different from simple fault injection, is
that it represents an agreement that is accepted both by the
computer industry and by the user community: The benchmark
specifies in detail the measures, the domain in which these
measures are considered valid and meaningful, and the proce-
dures and rules to be followed, to enable users to implement
the benchmark for a given system and to interpret the results.
Dependability benchmarks have been proposed for several
types of systems, such as transaction processing systems,
as described in [20]. The evaluation framework established
by dependability benchmarks is today partially integrated in
the ISO/IEC Systems and software Quality Requirements and
Evaluation (SQuaRE) standard, which defines an evaluation
module, the ISO/IEC 25045, that deals with the assessment of
the recoverability of IT systems in the presence of accidental
faults, and defines two measures, the resiliency (ratio between
the throughput obtained in absence and presence of faults),
and the autonomic recovery index (degree of automation in
the system response against a threat) [21].

With the softwarization of network functions, it becomes
important to extend the scope of dependability benchmarking
to NFV. To this purpose, the general principles of dependability
benchmarking need to be tailored for NFV, by identifying
appropriate measures, faultloads and workloads. This work
represents a step towards this goal, by proposing a set of KPIs
for characterizing performance and availability, and an experi-
mental approach for the quantitative evaluation of performance
degradation and unavailability of NFVIs.

Several fault injection techniques and tools have been
developed for the dependability evaluation of complex and dis-
tributed systems, including distributed filesystems [22], OLTP
systems [23], [24], multicast and group membership protocols
[7], [25], and real-time communication systems [26]. More re-
cently, fault injection techniques and tools have been developed
for cloud computing software. In [27], Ju et al. discuss the
testing of fault resilience of the OpenStack cloud computing
platform. They inject faults targeting communication among
OpenStack services, namely service crashes (by killing service
processes) and network partitions (by disabling communication
between two subnets). Fault injection identified several types of
bugs, such as erroneous return code checking from OpenStack

services, timeout bugs (e.g., indefinite waits for a failed ser-
vice), and erroneous state transitions in the lifecycle of VMs.
Fate [28], and its successor PreFail [29], are tools aimed at
testing cloud software (including Cassandra, ZooKeeper, and
HDFS) against multiple faults from the environment, including
disk failures, network partitions, and crashes of remote pro-
cesses. They inject faults by intercepting method calls (e.g.,
library calls for disk or network I/O), and raising exceptions
instead of normally executing method calls. Multiple faults
are injected during an experiment, in order to test exception
handlers and recovery routines when faults keep occurring
during their execution. CloudVal [30] is a framework to test
the isolation among a hypervisor and its VMs (e.g., whether
faults in a VM can propagate their effects outside the VM). The
framework provides a set of tools (supporting KVM and Xen)
that adopt debugger-based techniques to inject “soft” faults in
memory and CPU registers, guest misbehavior, leaks and CPU
losses. In summary, all these studies adopt fault injection for
testing of specific cloud computing components.

We remark that the dependability evaluation of NFVIs
should go beyond the testing of its individual components.
In fact, the dependability of NFVIs results from the tight
interactions among several components, where fault tolerance
is introduced at several layers, as discussed in section II.
Moreover, differing from traditional IT cloud infrastructures,
NFVIs have more stringent performance and dependability
requirements inherited from the telecom applications they are
meant for. Therefore, our methodology jointly evaluates per-
formance and dependability of the NFVI as a whole, following
a holistic approach and leveraging on fault injection.

VI. CONCLUSION

Performance and reliability are critical objectives for the
widespread adoption of NFVIs. In this paper, we presented a
dependability evaluation and benchmarking methodology for
NFVIs. Based on fault injection, the methodology analyzes
how faults impact on VNFs in terms of performance degrada-
tion and service unavailability. The case study on the IMS
showed how the methodology can point out dependability
bottlenecks in the NFVI and guide design efforts. Future work
will extend the evaluation to different NFVI architectures, by
also considering alternative virtualization technologies.

ACKNOWLEDGMENT

This work has been partially supported by the project
PON-FSE-MIUR DISPLAY (PON02 00485 3487784) and by
Huawei Technologies Co. Ltd.

REFERENCES

[1] NFV ISG, “Network Functions Virtualisation - An Introduction, Bene-
fits, Enablers, Challenges & Call for Action,” ETSI, Tech. Rep., 2012.

[2] ——, “Network Functions Virtualisation (NFV) - Network Operator
Perspectives on Industry Progress,” ETSI, Tech. Rep., 2013.

[3] A. Manzalini, R. Minerva, E. Kaempfer, F. Callegari, A. Campi,
W. Cerroni, N. Crespi, E. Dekel, Y. Tock, W. Tavernier et al., “Manifesto
of edge ICT fabric,” in Proc. ICIN, 2013, pp. 9–15.

[4] European Union Agency for Network and Information Security,
“Cloud computing certification.” [Online]. Available: https://resilience.
enisa.europa.eu/cloud-computing-certification

[5] NFV ISG, “Network Functions Virtualisation (NFV) - Virtualisation
Requirements,” ETSI, Tech. Rep., 2013.

[6] ——, “Network Function Virtualisation (NFV) - Resiliency Require-
ments,” ETSI, Tech. Rep., 2014.

[7] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins,
and D. Powell, “Fault injection for dependability validation: A method-
ology and some applications,” IEEE TSE, vol. 16, no. 2, pp. 166–182,
1990.

[8] L. L. Peterson and B. S. Davie, Computer Networks, Fifth Edition: A
Systems Approach, 5th ed. Morgan Kaufmann Publishers Inc., 2011.

[9] NFV ISG, “Network Functions Virtualisation (NFV) - Virtual Network
Functions Architecture,” ETSI, Tech. Rep., 2013.

[10] E. Bauer and R. Adams, Reliability and Availability of Cloud Comput-
ing, 1st ed. Wiley-IEEE Press, 2012.

[11] Quality Excellence for Suppliers of Telecommunications Forum
(QuEST Forum), “TL 9000 Quality Management System Measurements
Handbook 4.5,” Tech. Rep., 2010.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. SoCC,
2010, pp. 143–154.

[13] C. Binnig, D. Kossmann, T. Kraska, and S. Loesing, “How is the
Weather Tomorrow?: Towards a Benchmark for the Cloud,” in Proc.
DBTest, 2009.

[14] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,
A. Klepchukov, S. Patil, A. Fox, and D. Patterson, “Cloudstone: Multi-
platform, multi-language benchmark and measurement tools for web
2.0,” in Proc. CCA, 2008.

[15] HP Networking Performance Team. Netperf HomePage. http://www.
netperf.org/netperf/.

[16] Clearwater, “Project Clearwater - IMS in the Cloud,” 2014. [Online].
Available: http://www.projectclearwater.org/

[17] G. Carella, M. Corici, P. Crosta, P. Comi, T. M. Bohnert, A. A. Corici,
D. Vingarzan, and T. Magedanz, “Cloudified IP Multimedia Subsystem
(IMS) for Network Function Virtualization (NFV)-based architectures,”
in Proc. ISCC, 2014.

[18] Gayraud, Richard and Jacques, Olivier and Day, Robert and Wright,
Charles P. SIPp. http://sipp.sourceforge.net/.

[19] M. Brown, A. Kapur, and J. King, “VMware vCenter Server 5.5
Availability Guide,” Tech. Rep., 2014.

[20] K. Kanoun and L. Spainhower, Dependability Benchmarking for Com-
puter Systems. Wiley-IEEE Computer Society, 2008.

[21] J. Friginal, D. de Andrés, J.-C. Ruiz, and R. Moraes, “Using Depend-
ability Benchmarks to Support ISO/IEC SQuaRE,” in Proc. PRDC,
2011, pp. 28–37.

[22] R. Lefever, M. Cukier, and W. Sanders, “An experimental evaluation
of correlated network partitions in the Coda distributed file system,” in
Proc. SRDS, 2003, pp. 273–282.

[23] M. Vieira and H. Madeira, “A dependability benchmark for OLTP
application environments,” in Proc. VLDB, 2003, pp. 742–753.

[24] A. Bondavalli, S. Chiaradonna, D. Cotroneo, and L. Romano, “Effective
fault treatment for improving the dependability of COTS and legacy-
based applications,” IEEE TDSC, vol. 1, no. 4, pp. 223–237, 2004.

[25] B. Helvik, H. Meling, and A. Montresor, “An approach to experimen-
tally obtain service dependability characteristics of the Jgroup/ARM
system,” Proc. EDCC, pp. 179–198, 2005.

[26] S. Dawson, F. Jahanian, T. Mitton, and T. Tung, “Testing of fault-
tolerant and real-time distributed systems via protocol fault injection,”
in Proc. FTCS, 1996, pp. 404–414.

[27] X. Ju, L. Soares, K. G. Shin, K. D. Ryu, and D. Da Silva, “On fault
resilience of OpenStack,” in Proc. SoCC, 2013, pp. 1–16.

[28] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-
Dusseau, R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur, “FATE and
DESTINI: A Framework for Cloud Recovery Testing,” in Proc. NSDI,
2011, pp. 238–252.

[29] P. Joshi, H. S. Gunawi, and K. Sen, “Prefail: A programmable tool for
multiple-failure injection,” in Proc. OOPSLA, 2011, pp. 171–188.

[30] C. Pham, D. Chen, Z. Kalbarczyk, and R. K. Iyer, “CloudVal: A
framework for validation of virtualization environment in cloud infras-
tructure,” in Proc. DSN, 2011, pp. 189–196.

