2025 IEEE 36th International Symposium on Software Reliability Engineering Workshops (ISSREW) | 979-8-3315-5325-8/25/$31.00 ©2025 IEEE | DOI: 10.1109/ISSREW67781.2025.00085

2025 IEEE 36th International Symposium on Software Reliability Engineering Workshops (ISSREW)

ChaosLLM: A Dependability Testing Approach for
Tool-calling Agents

Antonio Ken IANNILLO
Interdisciplinary Center of Security, Reliability, and Trust (SnT)
University of Luxembourg
email: antonioken.iannillo@uni.lu

Abstract—Large Language Models (LLMs) are increasingly
wrapped in agents that orchestrate external tools, memories,
and planning components to perform mission-critical functions.
Despite growing interest in security testing of LLMs, the de-
pendability of such agents remains largely unexplored. Existing
robustness evaluations focus on prompt-level attacks and overlook
non-adversarial system-level faults that routinely arise in real de-
ployments (e.g., tool crashes or timeouts). We present ChaosLLLM,
a lightweight fault injection framework that sits between an
LLM agent and its environment, allowing researchers to emulate
realistic failures and quantify their impact on task success and
recovery behavior. This paper focuses on tool-calling capabilities
as a starting point for a broader investigation. We detail our
experimental design, define the dependability metrics, and run
the experiments on a LangChain ReAct agent. Our preliminary
results motivate the need for further research efforts. Finally, we
discuss how ChaosLLM can be extended in future work.

Index Terms—Large Language Models, Fault Injection, De-
pendability, Chaos Engineering, Software Reliability

[. INTRODUCTION

LLM-powered agents have begun to assist developers in
code generation, issue triage, and architectural planning [1]-
[3]. In contrast to single-shot chatbots, these agents coordinate
multiple steps, external APIs (e.g., web services, repositories,
search engines) and persistent memories. A silent malfunction
in any of these components can lead to incorrect or confusing
answers, yet the research community currently lacks tools and
benchmarks to expose such vulnerabilities systematically.

Inspired by classical chaos engineering for microservices
[4] and fault injection methodologies [5], [6], we introduce
ChaosLLM - a framework that deliberately perturbs the oper-
ational workflow of LLM agents and records how the agents
behave under stress. This short paper focuses on the tool
calling capabilities and makes three contributions:

¢ A taxonomy of common, nonadversarial system-level

faults relevant to LLM agents;

« A middleware-based injector that requires no change to

the source code of agent or tools;

« An experimental protocol and preliminary results for five

simple scenarios on a LangChain ReAct agent.
More complex and complete workloads involving specific
software engineering tools, memory, multiagent, and MCP
instrumentation fall outside the scope of this first study.

Parts of the manuscript were generated or assisted using OpenAI’s GPT-

4 language model. The content was reviewed and edited by the authors to
ensure accuracy, originality, and adherence to academic standards.

II. BACKGROUND AND FAULT MODEL

LLM agents augmented with tools such as LangChain’s
ReAct, AutoGen’s collaborative agents, and GitHub Copilot
Agents delegate subtasks (e.g., arithmetic, code execution,
or retrieval) to external components. Although misprompting
remains a concern, daily reliability depends on whether these
components behave correctly and on the agent’s ability to
detect and recover from faults.

In a tool-calling agent, an LLM is repeatedly called in a
loop. At each step, the agent decides which tools to call and
what the inputs to those tools should be. Then those tools are
run, and the outputs are fed back into the LLM as observations.
The loop terminates when the agent decides that it has enough
information to solve the user request, and it is not worth calling
any more tools.

Based on the previous literature on fault injection and recent
LLM studies (cfr. Section VI), we consider four generic failure
modes. They are:

1) Unreachable: the tool cannot be contacted and imme-
diately rejects the request.

2) Slow Response: the tool responds correctly, but only
after a significant, unexpected delay.

3) Non-Responsive (Hang): the tool does not respond at
all, leaving the request indefinitely pending.

4) Incorrect Response: it returns a result syntactically
plausible but semantically incorrect or subtly flawed.

These classes map to well-known API failure modes in dis-
tributed systems. We do not claim completeness; our focus
is on the granularity of the tool call interface. Extending the
taxonomy and parameterization is left to future work.

III. CHAOSLLM FRAMEWORK
A. Architecture Overview

ChaosLLM fits between the LLM (reasoner) and every
external tool. The agent’s own control loop, prompts, and
memory stores are left untouched. Only the call site that con-
nects the LLM’s Action to the tool’s run() method is wrapped
in a thin interception layer. Because the hook is a simple
decorator design pattern, it works with vanilla LangChain
and does not require modifications to the agent or the tools.
The engine supports four distinct classes of tool-level failures
defined in Section II, each encoded as a fault effect that the
injector can impose on an otherwise correct call.

2994-810X/25/$31.00 ©2025 IEEE 282
DOI 10.1109/ISSREW67781.2025.00085
Authorized licensed use limited to: University of Luxembourg. Downloaded on February 04,2026 at 11:07:41 UTC from |IEEE Xplore. Restrictions apply.

First, we have the unreachable condition. In this scenario,
the injector simulates an immediate refusal of the call, for
example, because of a missing library or network error. The
moment the agent asks to invoke a tool, ChaosLLM raises
a bespoke Python exception that short-circuits the normal
execution path. From the agent’s point of view, the tool simply
never existed or went offline before the call.

The second failure is slow response. The tool does eventu-
ally reply, but only after an abnormally long pause. ChaosLLM
implements this by blocking the thread for a configurable
duration. Nothing else is altered, but the wall-clock delay
forces the agent to cope with latency spikes that can cascade
into timeout logic higher up the stack.

Third, comes the non-responsive (hang) failure. A hang
offers no answer at all. The injector simply never returns
control. Therefore, any fault-tolerant mechanism must come
from the agent’s own timeout watchdog.

Finally, ChaosLLM supports incorrect response faults.
These are the subtlest to spot because everything appears
normal at the protocol level: the tool responds promptly and
with syntactically well-formed data, yet the semantics are
corrupted. The injector achieves this by passing the genuine
output through a user-defined transformer that perturbs it.
By keeping the structure intact, we test the agent’s self-
validation capacity rather than its ability to detect crashes.
Two perturbators keep the same data type. A delta perturbator
introduces a plausible but wrong answer, small enough that
an incautious agent might trust it. The numerical outputs are
nudged by a random offset. Non-numeric outputs undergo
random microedits (single-character insert, delete, replace, or
swap). A incorrect perturbator creates an obviously garbled
answer that still looks like a legitimate return value. By offer-
ing both a delta (subtle drift) and an incorrect (total scramble)
variant, ChaosLLM can test whether an agent possesses (1)
fine-grained sanity checks to reject almost correct but wrong
values and (2) coarse-grained filters to catch obviously invalid
values.

B. Test Automation

All experiments are driven by a plain text campaign file that
is parsed by a launcher script. Each nonempty line encodes one
experiment. Each run is executed in a fresh Python subprocess
to avoid cross-run side effects. We fix the LLM generation
parameters (e.g., temperature) and propagate a fixed seed to
every package that supports seeding. Because the task set is
small, final labels were verified by a human to avoid overfitting
task-specific heuristics. If the baseline and the faulty run
reproduce the semantically same result, the run is classified
as CORRECT. Otherwise, the run is classified as:

e SILENT-DIFF (when the answers differ),

e TIMEOUT (when the run exceed the time budget), or

e CRASH (when the agent crashes due to an uncaught
exception), or

« ERROR (when the agent provides an error message)

283

IV. EXPERIMENTAL DESIGN

In this short paper, we focus on five single-step decision
problems similar to those that are frequently showcased in
open-source agent demos. They are intentionally simple, yet
they exercise (i) arithmetic reasoning, (ii) tool orchestration,
and (iii) temporal knowledge. Each workload is implemented
as one LangChain ’task function’ that feeds an identical
prompt to the ReAct agent. The agent is equipped with the
minimal set of tools required to solve the problem (Table I).

For each pair (task, fault), we run 3 independent trials with
random seeds controlling the occurrence of the fault. Fault-
free baselines use the identical prompt set. We run 3 different
campaigns for three models provided by OpenAl:

o gpt-4: The flagship text model with the largest parameter
count that is generally accessible, highest quality on
public leader boards

e gpt-4-mini: A much smaller and less expensive derivative
of GPT-4 produced by the same training recipe (the same
tokenizer and the same instruction-following objective)
but with a lower parameter budget. It is mainly used for
latency- or cost-sensitive applications.

e 03: A model trained with a different pipeline from the
GPT-4 family (distinct optimizer hyperparameters, chain-
of-though, mixture-of-experts routing, and additional re-
inforcement learning from human-feedback stages). It
roughly has the same GPT-4-class accuracy on many
tasks, but with noticeably different error modes and
temperature sensitivity.

V. RESULTS

The experimental campaign counted 225 runs (5 tasks, 5
faults, 3 repetitions, 3 models), for which we computed the
following dependability metrics:

o Task Success Rate (TSR): fraction of runs that reach a
correct final answer;

« Hallucination Rate (HR): responses that contain confi-
dent but incorrect claims (operationally defined as num-
ber of SILENT-DIFF outcomes over the total number of
runs);

« Timeout Ratio (TR): proportion of calls where the agent
exceeds the per-run budget we imposed (i.e., 60 seconds).

Table II and Table III compress the campaign results.

The 03 model achieves the highest Task Success Rate
(78.7%) and the lowest timeout rate, while gpt-4-mini lags
behind both larger models. Surprisingly, gpt-4 and gpt-4-mini
share an identical timeout ratio, even though they differ sub-
stantially in parameter count; therefore, the difference stems
from semantic failures (hallucinations and hard errors) rather
than from time-budget violations alone.

Slow faults had virtually no effect: every model answered
correctly in the 45 affected runs. The ReAct loop simply
waits and proceeds once the tool responds, confirming that
the default timeout threshold of 60 seconds is generous for
these microbenchmarks.

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 04,2026 at 11:07:41 UTC from |IEEE Xplore. Restrictions apply.

TABLE 1
MICRO-WORKLOAD SUITE USED IN CHAOSLLM. EACH ROW IS AN INDEPENDENT SCENARIO GIVEN TO THE LANGCHAIN REACT AGENT, TOGETHER
WITH THE TOOLS MADE AVAILABLE TO THE AGENT AND THE GROUND-TRUTH ANSWER RECORDED IN EXPECTED . JSON.

ID Scenario Natural-language user prompt Tools exposed Ground-truth answer
to the agent
FX Currency “How much is 150 € in USD if the exchange rate is 1.1?” CalculatorTool 165
Conversion Math
TIP Split Bill with “We spent $120 at a restaurant, added a 15% tip, and we’re 4 people. How CalculatorTool 34.5
Tip much does each person pay?”
BMI Body Mass “What is the BMI for someone who is 70kg and 1.75m tall?” CalculatorTool 22.86
Index (BMI)
Calculation
ETA Travel Distance “How long will it take to drive from Los Angeles to San Diego if the average ~ SearchTool, 2 hours
Estimator speed is 60 mph?” CalculatorTool
TRIVIA Trivia Bot “Who discovered gravity, and how many years ago was that?” WikipediaTool, Isaac Newton, 338 years
DateTimeTool,
CalculatorTool

TABLE 1T
OUTCOME COUNTS AGGREGATED OVER THE FIVE TASKS (FX, TIP, BMI, ETA, TRIVIA) AND THREE REPETITIONS.

‘ CORRECT SILENT-DIFF TIMEOUT CRASH ERROR

‘ gpt-4 gpt-4-mini 03 | gpt-4 gpt-4-mini 03 ‘ gpt-4 gpt-4-mini 03 | gpt-4 gpt-4-mini 03 | gpt-4 gpt-4-mini 03
Unreachable | 12 7 12 3 3 3 0 0 0 0 0 0 0 5 0
Slow 15 15 15 0 0 0 0 0 0 0 0 0 0 0 0
Hang 3 3 9 0 0 2 12 12 4 0 0 0 0 0 0
Incorrect 12 12 13 2 3 2 0 0 0 0 0 0 1 0 0
Delta 6 4 0] 9 11 4 0 0 1 0 0 0 0 0 0
Total | 48 41 59| 14 17 1| 12 12 5] 0 0 0] 1 5 0

TABLE III alternative plan, leading to high pass rates except on the

AGGREGATE OUTCOMES OVER THE FULL CAMPAIGN
(HIGHER TSR IS BETTER, LOWER HR AND TO ARE BETTER).

Model TSR (%) HR (%) TO (%)
gpt-4 64.0 187 16.0
gpt-4-mini 547 227 16.0
03 787 14.7 53

Hang faults were the most disruptive. Across models, 52%
(12/23) of all noncorrect outcomes are timeouts triggered by
this fault. The gpt-4 and gpt-4-mini models time out on 4 of the
5 tasks, while the 03 model manages to recover in 3. A closer
inspection of the execution traces reveals that the stronger the
backbone, the less it actually relies on tools. In every run that
ended with a CORRECT label despite an injected hang, the
agent never invoked the blocked tool; it solved the task through
pure in-context reasoning. Only the TRIVIA task forces every
model to call at least the datetime tool, which explains why
all three models systematically time out on that task under the
hang fault. This observation suggests that adding smarter “tool
call only if needed” logic can reduce the surface of denial-of-
service style failures, especially for larger LLMs that can often
solve simple subtasks without delegation.

For Unreachable tools, the agent usually retries with an

284

TRIVIA task, where an unreachable datetime tool makes
the agent believe it is the year 2023, except for the most
recent 03 model. Additionally, the gpt-4-mini model leaks the
raw exception string in five runs, hence the larger ERROR
count. The blatantly Incorrect perturbator is handled well:
only one out of 45 runs ends in an ERROR (the model gpt-
4 on the TRIVIA task asks the user for help: "Could you
please try asking for the current date and time again?”).
Agents appear to perform a coarse plausibility check and
immediately disregard the idea of using the tool if the output
is obviously garbled and approach the task only with their
own capabilities and knowledge. The subtle Delta corruption
is the Achilles’ heel of every model. It accounts for 42%
of all hallucinations (SILENT-DIFF). The agent confidently
returns a wrong result with confidence in 26 out of 45 runs,
indicating that fine-grained sanity checks are still missing.
Although the 03 model tops the aggregate scoreboard, the gap
is not uniform across fault types: its advantage comes from its
ability to reason without the need for simple tools, as presented
in this preliminary work. In contrast, all three models are
equally vulnerable to delta perturbations, consistent with the
hypothesis that the weakness may lie in the generic prompting
pattern of the ReAct tool, and we cannot rule out backbone
contributions given our limited scope. Here we highlight three

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 04,2026 at 11:07:41 UTC from |IEEE Xplore. Restrictions apply.

takeaways from this preliminary experimental campaign: (1)
Under our microbenchmarks and a 60s timeout, slow-response
faults did not affect outcomes, but complete hangs require an
external watchdog; (2) Agents cope well with overly garbled
output, yet fail silently on plausible but wrong results; (3) The
choice of backbone matters, but robust prompting and tool-
level validation matter more.

VI. RELATED WORK

LLMs are now routinely evaluated for security and robust-
ness, yet existing efforts concentrate on prompt—level attacks
rather than on the system context in which agents operate.
Prompt fuzzing frameworks, such as PromptFuzz [7] and red-
teaming suites like AgentXploit [8] craft adversarial inputs that
attempt to elicit policy violations or jailbreak behavior. While
invaluable for hardening the natural-language interface, these
techniques leave untested the failure modes that stem from
the external tooling, memories, and control loops that modern
agents rely on. Chaos Monkey [9] and similar approaches
[5], [6] deliberately disrupt virtual machines, containers, or
network links to check whether cloud services degrade grace-
fully. However, these approaches operate at infrastructure
granularity and are blind to the unique control flow of an LLM
agent. In the context of software engineering, research has
documented logic bugs [10], unsafe networking patterns [11],
and quality regressions when replacing Stack Overflow with
model suggestions [12]. Finally, initial attempts at evaluating
the quality of agent code have begun to surface [13]. TrustA-
gent [14], for example, introduces benchmarks that measure
factual consistency and fidelity to the role between cooperating
agents. However, even these studies assume fault-free access
to the underlying tools and services. ChaosLLM represents
an initial step toward that goal by injecting realistic tool-level
failures and quantifying their effect on agent dependability.

VII. FUTURE WORK

The present study should be viewed as a first step toward
systematically testing the reliability of LLM tool ecosystems.
Several simplifying assumptions helped us keep the proto-
type small and the campaign affordable, yet they also limit
the external validity of the findings. ChaosLLM currently
intercepts tool invocations in LangChain. However, Model
Context Protocol (MCP) has rapidly emerged as the de facto
standard for tool calling across closed- and open-source alter-
natives. MCP adds explicit, strongly typed JSON schemas,
function call continuations, and streaming partials. Porting
ChaosLLM to the MCP layer would let us inject faults before
any framework-specific adaptation occurs. Our five tasks are
deliberately simplistic. Real products rely on heterogeneous
collections of tools and execute far more complex tasks. Future
campaigns should therefore incorporate off-the-shelf services
and reproduce real user conversations that include different
activities. Currently, all injected failures are persistent: If a
tool is unreachable or returns a corrupted value, it does so
for the whole run. In production, however, most incidents
are transient (momentary network blips, short overload bursts,

285

flaky third-party APIs). Transient faults interact with an agent’s
retry policy and self-healing logic in ways that persistent
faults cannot expose. Extending ChaosLLM with temporal
fault schedules is, therefore, a high-priority item. Today’s
prototype reasons about a single autonomous agent. However,
emerging stacks comprise swarms of agents that delegate
subtasks to each other through explicit protocols. Although one
may model consider an assistant agent just another tool, this
elides other aspects (for example, trust). ChaosLLM should
therefore be extended with first-class awareness of agent-
to-agent protocols. Addressing these points will transform
ChaosLLM from a proof-of-concept into a comprehensive
dependability tool for the next generation of tool-using and
multiagent LLM applications.

REFERENCES

[1] K. El Haji, C. Brandt, and A. Zaidman, “Using github copilot for test
generation in python: An empirical study,” in Proceedings of the 5th
ACM/IEEE International Conference on Automation of Software Test
(AST 2024), 2024, pp. 45-55.

M. Hu, P. Zhao, C. Xu, Q. Sun, J.-G. Lou, Q. Lin, P. Luo, and S. Rajmo-
han, “Agentgen: Enhancing planning abilities for large language model
based agent via environment and task generation,” in Proceedings of
the 31st ACM SIGKDD Conference on Knowledge Discovery and Data
Mining V. 1, 2025, pp. 496-507.

E. Altiero, D. Cotroneo, R. De Luca, and P. Liguori, “Securing ai code
generation through automated pattern-based patching,” in 2025 55th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks Workshops (DSN-W). 1EEE, 2025, pp. 282-289.

A. Al-Said Ahmad, L. F. Al-Qora’n, and A. Zayed, “Exploring the
impact of chaos engineering with various user loads on cloud native
applications: an exploratory empirical study,” Computing, vol. 106, no. 7,
pp. 2389-2425, 2024.

R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing dependability
with software fault injection: A survey,” ACM Computing Surveys
(CSUR), vol. 48, no. 3, pp. 1-55, 2016.

G. Yu, G. Tan, H. Huang, Z. Zhang, P. Chen, R. Natella, Z. Zheng,
and M. R. Lyu, “A survey on failure analysis and fault injection in ai
systems,” ACM Transactions on Software Engineering and Methodology,
2024.

J. Yu, Y. Shao, H. Miao, and J. Shi, “Promptfuzz: Harnessing fuzzing
techniques for robust testing of prompt injection in 1lms,” arXiv preprint
arXiv:2409.14729, 2024.

Z. Wang, V. Siu, Z. Ye, T. Shi, Y. Nie, X. Zhao, C. Wang, W. Guo, and
D. Song, “Agentxploit: End-to-end redteaming of black-box ai agents,”
arXiv e-prints, pp. arXiv—-2505, 2025.

M. A. Chang, B. Tschaen, T. Benson, and L. Vanbever, “Chaos monkey:
Increasing sdn reliability through systematic network destruction,” in
Proceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, 2015, pp. 371-372.

T. Sharma, “Llms for code: The potential, prospects, and problems,”
in 2024 IEEE 21st International Conference on Software Architecture
Companion (ICSA-C). 1EEE, 2024, pp. 373-374.

M. Dunne, K. Schram, and S. Fischmeister, “Weaknesses in Ilm-
generated code for embedded systems networking,” in 2024 IEEE 24th
International Conference on Software Quality, Reliability and Security
(ORS). IEEE, 2024, pp. 250-261.

L. Zhong and Z. Wang, “Can 1lm replace stack overflow? a study on
robustness and reliability of large language model code generation,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 38,
no. 19, 2024, pp. 21 841-21849.

B. Yetistiren, I. Ozsoy, and E. Tuzun, “Assessing the quality of github
copilot’s code generation,” in Proceedings of the 18th international con-
ference on predictive models and data analytics in software engineering,
2022, pp. 62-71.

W. Hua, X. Yang, M. Jin, Z. Li, W. Cheng, R. Tang, and Y. Zhang,
“Trustagent: Towards safe and trustworthy llm-based agents through
agent constitution,” in Trustworthy Multi-modal Foundation Models and
Al Agents (TiFA), 2024.

[13]

[14]

Authorized licensed use limited to: University of Luxembourg. Downloaded on February 04,2026 at 11:07:41 UTC from |IEEE Xplore. Restrictions apply.

