
A Proposal for Security Assessment of
Trustzone-M based Software

Antonio Ken Iannillo, Radu State
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg, Luxembourg, Luxembourg
{antonioken.iannillo, radu.state}@uni.lu

Abstract—With the advent of the Internet of Things (IoT)
paradigm, computing and networking capabilities are extending
to devices that are not considered as computers, enabling them
to interact with the physical world or other software entities
with minimal or no human input. This fast abstract proposes
a methodology for the security assessment of software based
on TrustZone-M, the ARM hardware security extension for
microcontrollers. The methodology consists of the exploitation
of a verification and validation framework to automatically test
TrustZone-M based software.

Index Terms—IoT, security, assessment, trustzone-m

I. INTRODUCTION

Trusted hardware technologies are commonly used as anti-
tamper technologies to make software more resistant against
attack and protect critical program elements. It is generally
more difficult successfully attack trusted hardware than a
software-only protection scheme. In these years, several tech-
nologies have been proposed and implemented in computers
processors. The most spread solutions are Intel SGX1 and
ARM Trustzone-A [1] [2]. They both have been largely used
for implementing the security and privacy of software running
in both the cloud servers and the mobile devices. With the
advent of the Internet of Things (IoT) paradigm, computing
and networking capabilities are extending to devices that are
not considered as computers, enabling them to interact with
the physical world or other software entities with minimal
or no human input. Every IoT device can potentially talk to
other related devices in an environment to automate home
and industry tasks, and to communicate usable sensor data.
Furthermore, they can be found essentially everywhere.

These devices are powered by embedded computers: small
hardware (microcontrollers) equipped with specialized sensors
and actuators that run a constrained software to handle data
and external communication. Microcontrollers processors have
much more limitations than application processors. Indeed,
the main requirements for microcontroller applications are
low power consumption, real-time processing, deterministic
behavior, and low interrupt latency. Thus, hardware security
extensions for application processors cannot be directly ap-
plied, because they have been developed for more relaxed use
cases. However, we strongly require IoT devices to be secure.

Research supported by EC H2020 Project CONCORDIA GA 830927
1https://software.intel.com/en-us/sgx/

Secure App/Lib

Secure OS

Secure Monitor

Non-Secure 
App/Lib

Non-Secure OS

Secure App/Lib

Secure OS

Non-Secure 
App/Lib

Non-Secure OS

TrustZone-A TrustZone-M

Fig. 1. TrustZone technologies

Lately, ARM Holding, that already owns the largest share
of mobile and embedded markets (60%), has further extended
TrustZone-support for the tiniest low-end devices, which it
estimates to reach nearly 1 trillion by 2035 [3]. To reach
this objective, ARM designed an hardware security extension
from the ground up, instead of reusing it from application
processors, for microcontrollers with the name of TrustZone
Technology for Cortex-M profile or TrustZone-M [4]. The
first and only architecture using it so far is the ARMv8-M
architecture.

There are several security applications that can be enabled
by TrustZone-M, for example: IoT device makers can use it to
store intellectual property in secure memory while still allow-
ing non-secure application to access it via APIs; secure storage
of critical information; a root of trust implementation provides
a secure foundation for over-the-air (OTA) firmware updates
and mutual authentication between devices in a system.

As anticipated, these two technologies are very different.
In both TrustZone-A and TrustZone-M, the process has the
ability to execute either in the secure or the non-secure state,
whereas the non-secure software cannot access secure re-
sources directly. On the other hand, TrustZone-M implements
the two worlds in a completely different way. The secure state
is not determined by the value of a processor bit, but the
separation is memory map-based, i.e. the processor is in the
secure state when executing code from the secure memory
regions. Furthermore, communication between worlds are not
handled by a secure monitor that resides in both worlds, but
the transitions take place automatically in exception handling
code allowing multiple entry points to the secure world. Fig. 1
shows the differences of these two technologies in the way

https://software.intel.com/en-us/sgx/


secure and non-secure worlds communicate.
We aim to a methodology for the security assessment of

software based on TrustZone-M technology and a novel veri-
fication and validation framework to implement this methodol-
ogy. The methodology consists of new methods for the security
assessment: the detection of the attack surface of the software
running in the secure world of an ARMv8-M device; the
generation of test inputs for the target interfaces exploiting
the unique feedback of the target; the detection of security
violations in executed test case (TrustZone-M test oracles).
These methods will be implemented in a novel verification and
validation framework specifically tailored for software based
on trusted hardware technology for microcontrollers.

II. RELATED WORK

Few studies on the security properties on TrustZone-based
systems uncovered notable vulnerabilities in TrustZone-A
[5] [6]. Reasonably, the infancy of TrustZone-M causes the
scarcity of available information. The main focus is on security
by design, e.g. Kinibi-M 2, CFI CaRE [7], ASSURED [8].

ARM Holding is investing strongly on low-end secure
devices, not only in term of hardware architecture design.
Indeed, it recently started the Platform Security Architecture
(PSA) 3 and an accompanying open source software project,
named Trusted Firmware-M4.

III. RESEARCH QUESTIONS AND PROPOSED APPROACH

We want to answer the following research questions:
RQ1 In a software system based on TrustZone-M technology,

is it possible to automatically detect the entry points of
the secure world from the normal world?

RQ2 What classes of vulnerabilities affect secure code exploit-
ing TrustZone Technology in ARMv8-M architectures?

RQ3 If the proposed framework is applied against a deployed
software implementation based on TrustZone-M technol-
ogy, is it able to find vulnerabilities (efficacy) with a
reasonable time (efficiency)?

We identified different steps to answer these three research
questions.

Discovery Phase First, we need to develop a new method
for the detection of the entry points of the secure world
from the normal world in secure software implementations
based on TrustZone-M. We will start by studying the ARMv8-
M specification and deeply understand what the hardware
mechanisms for the communication between the secure and
non-secure worlds are. Then, we extract the unique features
of the entry points and build a detection tool based on them.
The entry points of the secure code constitute its attack
surface. Attack surfaces detection is an important step to
security assessment, because it unveils where the adversary
can attack the target from. The approach we propose is based
on a systematic analysis of the target binary code. For each

2https://www.trustonic.com/news/blog/not-just-droning-rise-kinibi-m/
3https://www.arm.com/why-arm/architecture/

platform-security-architecture/
4https://www.trustedfirmware.org/about

detected entry function, we then analyze the first instructions
and extract its signatures. Furthermore, we craft an input
sequence and test the entry point to be accessible from the
normal world. This approach can be completely automatized,
and it is complementary to the analysis of the source code
and documentation, but most of the time the attacker has no
access to them because it is proprietary or absent. The results
of this phase will automatically answer RQ1.

Test Design Phase Then, we develop a framework for
the verification of secure software implementations based
on TrustZone-M. We exploit the knowledge obtained by the
detection of entry points and we test them through fuzzing
techniques, exploiting and extending the state-of-the-art. We
define the operators and the feedbacks to construct the test case
(input generation) and the oracles to define test failures (vul-
nerability detection). The input generation benefits from the
debugging utilities provided by the architectures and creates
inputs based on code constants and semantic knowledge, both
extracted from the target. The vulnerability detection is based
on the monitoring of the security properties guaranteed by the
secure function. For example, the oracle check that a secure
memory region is not accessed by the running test, instead of
looking for specific vulnerabilities or determining the correct
output for a every generated given input. The attack surface
detector is added to the framework to help the user to initialize
the testing campaign.

Analysis Phase Finally, we can perform an experimen-
tal campaign on secure software implementation based on
TrustZone-M and analyze the results. We execute a testing
campaign on Trusted Firmware-M and measure the efficacy
(number of vulnerabilities found) and efficiency (testing time)
of the framework. The found vulnerabilities are classified by
their nature and severity. The impact on the embedded device
will be deeply analyzed from the root cause to the failure to
provide useful information for the failure-tolerant mechanisms.
Once detected, a vulnerability will be also communicated to
the Common Vulnerability and Exposure (CVE) repository 5.

REFERENCES

[1] T. Alves, “Trustzone: Integrated hardware and software security,” White
paper, 2004.

[2] A. ARM, “Security technology building a secure system using trustzone
technology (white paper),” ARM Limited, 2009.

[3] P. Sparks, “The route to a trillion devices,” White Paper, ARM, 2017.
[4] TrustZone technology for ARMv8-M Atchitecture, ARM, 2017.
[5] A. Machiry, E. Gustafson, C. Spensky, C. Salls, N. Stephens, R. Wang,

A. Bianchi, Y. R. Choe, C. Kruegel, and G. Vigna, “BOOMERANG:
Exploiting the Semantic Gap in Trusted Execution Environments,” in
Proceedings 2017 Network and Distributed System Security Symposium,
2017.

[6] D. Rosenberg, “QSEE TrustZone Kernel Integer Overflow Vulnerability,”
Tech. Rep., 2014.

[7] T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 259–284.

[8] N. Asokan, T. Nyman, N. Rattanavipanon, A.-R. Sadeghi, and G. Tsudik,
“Assured: Architecture for secure software update of realistic embedded
devices,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2290–2300, 2018.

5https://cve.mitre.org

https://www.trustonic.com/news/blog/not-just-droning-rise-kinibi-m/
https://www.arm.com/why-arm/architecture/platform-security-architecture/
https://www.arm.com/why-arm/architecture/platform-security-architecture/
https://www.trustedfirmware.org/about
https://cve.mitre.org

