Chizpurtle: A Gray-Box Android Fuzzer
for Vendor Service Customizations

Antonio Ken Tannillo*, Roberto Natella*, Domenico Cotroneo*, Cristina Nita-Rotaru®
*Universita degli Studi di Napoli Federico II, Naples, Italy TNortheastern University, Boston, USA
*{antonioken.iannillo, roberto.natella, cotroneo} @unina.it f¢.nitarotaru @neu.edu

Abstract—Android has become the most popular mobile OS,
as it enables device manufacturers to introduce customizations
to compete with value-added services. However, customizations
make the OS less dependable and secure, since they can introduce
software flaws. Such flaws can be found by using fuzzing, a
popular testing technique among security researchers.

This paper presents Chizpurfle, a novel ‘“gray-box” fuzzing
tool for vendor-specific Android services. Testing these services
is challenging for existing tools, since vendors do not provide
source code and the services cannot be run on a device emulator.
Chizpurfle has been designed to run on an unmodified Android
OS on an actual device. The tool automatically discovers, fuzzes,
and profiles proprietary services. This work evaluates the appli-
cability and performance of Chizpurfle on the Samsung Galaxy
S6 Edge, and discusses software bugs found in privileged vendor
services.

Index Terms—Android OS; robustness testing; fuzzing; vendor
customizations.

I. INTRODUCTION

Android comes in different flavors, depending on which
vendor is implementing it. Nowadays, more than 20 original
equipment manufacturers (OEMs), including but not limited
to Samsung, HTC, Huawei, Motorola, and LG, base their
devices on the Android Open Source Project (AOSP). Hard-
ware capabilities are not the only factor that support the
customers’ choice. Software customizations play a key role in
this aspect, making user experience unique and more enjoy-
able. For example, vendor customizations include services for
providing mobile personal assistants [1]-[3], advanced photo
enhancement [4], [5], mobile payments [6], efc.

Unfortunately, these customizations often introduce new
software defects, which are vendor-specific. Because they are
proprietary, vendor customizations are not integrated in the
open-source Android and do not benefit from the feedback
loop of the whole ecosystem. Thus, they are less scrutinized
than the core AOSP codebase, and their vulnerabilities take
significantly more time to be patched: for example, the Google
Android security team publishes a monthly security bulletin
[7] with new and patched security vulnerabilities, but it has to
refer the users to vendor-specific security bulletins such as the
ones by LG [8], Motorola [9], and Samsung [10]. It is worth
noting that vendors customizations consist of code running

with special privileges, thus exacerbating the security issues'.

'For example, recent devices based on Qualcomm chipsets suffer from a
vulnerability in the Qualcomm service API that allows privilege escalation
and information disclosure [11].

Fuzzing is a well-established and effective software testing
technique to identify weaknesses in fragile software inter-
faces by injecting invalid and unexpected inputs. Fuzzing was
initially conceived as a “black-box” testing technique, using
random or grammar-driven inputs [12]. More recently, “white-
box” techniques have been leveraging information about the
program internals (such as the test coverage) to steer the
generation of fuzz inputs, either by instrumenting the source
code or by running the target code in a virtual machine
[13], [14]. The visibility of the test coverage has dramatically
improved the effectiveness of fuzzing tools, as showed by
the high number of subtle vulnerabilities found in many
large software systems [13], [15], [16]. Unfortunately, these
tools are not applicable to proprietary Android services, since
vendors are not willing to share their source code, and since
virtual machine environments (e.g., device emulators) do not
support the execution of these proprietary extensions.

In this paper, we introduce a novel “gray-box” tool, named
Chizpurfle, to address the gap in the spectrum of mobile
fuzzers, and to improve the effectiveness of fuzzing on vendor
customizations. Similarly to recent white-box fuzz approaches,
Chizpurfle leverages test coverage information, while avoiding
the need for recompiling the target code, or executing it in a
special environment. The tool has been designed to be de-
ployed and run on unmodified Android devices, including any
vendor customization of the Android OS. The tool leverages
a combination of dynamic binary instrumentation techniques
(such as software breakpoints and just-in-time code rewriting)
to obtain information about the block coverage. Moreover,
Chizpurfle is able to guide fuzz testing only on the vendor
customizations, by automatically extracting the list of vendor
service interfaces on an Android device. The tool also provides
a platform for experimenting with fuzz testing techniques
(such as evolutionary algorithms) based on coverage-based
feedback.

We validated the applicability and performance of the
Chizpurfle tool by conducting a fuzz testing campaign on
the vendor customizations of the Samsung Galaxy S6 Edge,
running Android version 7. We found that Chizpurfle improves
the depth of testing compared to the black-box approach, by
increasing the test coverage by 2.3 times on average and 7.9
times in the best case, with a performance overhead that is
comparable to existing dynamic binary instrumentation frame-
works. Moreover, we discuss two bugs found in privileged
services during these evaluation experiments.



The rest of this paper is structured as follows. Background
and motivations for this work are discussed in Section II.
Previous related work and tools are discussed in Section III.
The design of Chizpurfle is described in Section IV, while its
evaluation is presented in Section V. Finally, conclusions and
future work conclude the paper in Section VI.

II. BACKGROUND AND MOTIVATION

When a vendor delivers a new smartphone on the market,
it includes several customizations of the vanilla Android, the
open source software stack from the Android Open Source
Project (AOSP). Unlike AOSP, customizations are usually
closed source and undocumented, and vary among vendors.
Vendors’ software customizations are focused on three areas:

e Device drivers: they support proprietary hardware com-
ponents of the smartphone;

o Stock applications: they are pre-installed on the smart-
phone along with the default AOSP stock applications;

o System services: they enhance the Android OS with ad-
ditional APIs for both stock and third-party applications.

We focus on the third type of customizations, i.e., system
services, because they usually run as privileged processes
(thus, they have a major potential impact on robustness and
security); they are directly exposed to (potentially buggy and
malicious) user applications; they provide wrappers to lower-
level interfaces, such as device drivers; and they represent a
large part of vendor customizations.

In order to understand the extent of deployment of vendor
customizations, we conducted a preliminary analysis of system
services from vendor customizations in three commercial
smartphones, namely the HTC One M9, the Huawei P8 Lite,
and the Samsung Galaxy S6 Edge. We extracted the services
interfaces on the three devices and on their corresponding
Android AOSP versions, using the same techniques of the
Chizpurfle tool (that are further discussed in §IV-B), and
compared the two lists.

TABLE I reports the results of this analysis. The first row is
the version of the Android Platform running on each device.
The second row is the number of services found only on the
device, but not in the corresponding AOSP; in the third and
forth rows, this number is split between Java and C services.
The next two rows refer only to the Java-implemented services,
of which we could retrieve the methods signatures through
Java Reflection. The fifth row considers the common Java
services, present in both AOSP and vendor devices, that have
new methods in the vendor version. Finally, the last row shows
how many new methods are present in the vendor services
that do not exist in the AOSP. Our analysis shows that there
is a significant number of customized services and vendor-
specific methods. Moreover, most of these services execute
in the context of privileged processes (such as system_server,
media_server, etc.), where any failure can have a severe impact
the whole OS.

The large vulnerability surface and high privilege of pro-
prietary services motivate the need for specialized tools to
evaluate their robustness. To achieve its full potential, fuzz

TABLE I
VENDORS’ SMARTPHONE CUSTOMIZATIONS ON SYSTEM SERVICES

Huawei HTC Samsung
P8 One Galaxy S6
Lite M9 Edge

Android version 5.0 6.0 7.0

# new services 30 7 82

# new C services 13 2 20

# new Java services 17 5 62

# extended Java services 15 25 52

# new Java methods 325 166 2,272

testing needs to guide the generation of inputs according to test
coverage, as demonstrated by empirical experience in several
security-critical contexts [13], [15], [16]. However, the lack of
source code for proprietary services, and the inability to run
these proprietary extensions on a device emulator, defy the
strategies for profiling coverage that are adopted by existing
fuzzing tools.

III. RELATED WORK

This section gives an overview of previous work in the gen-
eral area of fuzzing, and discusses how Chizpurfle improves
over existing tools for mobile device fuzzing.

OS and systems software fuzzing. Since its initial years,
fuzz testing has been extensively adopted for testing systems
software, such as network servers, shell applications, libraries,
and OS kernels. The early study by Miller et al. on fuzzing
UNIX system utilities [12], by injecting random inputs through
their command line interface and standard input stream, found
a surprisingly high number of targets that experienced crashes,
leaks and deadlocks, even when exposed to apparently trivial
(but invalid) inputs. Other approaches for OS robustness
testing, such as BALLISTA [17], MAFALDA [18], and the
DBench project [19] injected invalid inputs by bit-flipping
them or replacing them with “difficult” inputs, or forced the
failure of kernel APIs and device drivers [20], [21].

Among the most modern and mature fuzzing tools, Ameri-
can Fuzzy Lop (AFL) is well-known for having found notable
vulnerabilities in dozens of popular libraries and applications
[13]. AFL is an “instrumentation-guided genetic fuzzer”,
which modifies the target program at compile-time in order
to efficiently profile the branch coverage during the execution
of the tests, and to communicate with the main AFL process.
Based on coverage measurements, AFL iteratively improves
the quality of fuzz inputs, by mutating the previous inputs that
discovered new paths. AFL has also been extended to avoid
compile-time instrumentation, by using the QEMU virtual
machine to trace the instructions executed by the target (at
the cost of higher run-time overhead and of the additional
dependency on a virtual machine emulator). Another example
of coverage-guided fuzzer is syzkaller [22], which also uses
QEMU and compile-time instrumentation to fuzz the whole
Linux kernel through its system call interface.

Another significant advance has been represented by white-
box fuzzing techniques that leverage symbolic execution. The



ANDROID DEVICE

) g - ]
[ E)’Q”ng’ggR ]—» SEED MANAGER —»[ ggflg’:’;g; ]—-[ TEST EXECUTOR ]—-[ OUTPUTANALYZER]
\_ J
INSTRUMENTATION
(" L T
J S
SYSTEM SERVICE
! ORCHESTRATOR

............................

Fig. 1. Overview of the Architecture of Chizpurfle.

most well-known is KLEE [14], a virtual machine envi-
ronment, based on the LLVM compiler infrastructure, with
a symbolic state for every memory location (i.e., boolean
conditions that must hold at a given point of the execution)
that is updated as code is executed by an interpreter. When
KLEE encounters a branch condition, it forks in two execution
flows, each with a different constraint on the variables involved
in the branch condition. When a failure path is found, a
constraint solver is used to find an input that fulfills all the
conditions on that path. SAGE [23] is another well-known
fuzzing tool by Microsoft: starting from some (tentative)
concrete input, the tool traces the program execution using a
record&replay framework [24] to identify the path constraints
for the input; then, it negates one of these constraints, and
uses a constraint solver to generate inputs to cover the new
conditions. It is important to note that white-box fuzzing is
extremely powerful, but very resource-consuming due to the
overhead of constraint solving and to the exponential explosion
of program paths. Thus, these techniques are best applied in
combination with black-box fuzzing: Bounimova et al. [15]
report a split of 66%-33% of bugs found respectively by black-
and white-box fuzzing during the development of Microsoft’s
Windows 7. Moreover, white-box fuzzing can only be applied
when the target is executed in an environment (such as a virtual
machine) able to trace and to fork symbolic states.

Android fuzzers. In Android-related research, fuzzing has
been extensively used to attack network and inter-process
interfaces. For example, Mulliner and Miller [25] found severe
vulnerabilities in the SMS protocol. Droidfuzzer [26] targets
Android activities that accept MIME data through Intents (a
higher-level IPC mechanism based on Binder); Sasnauskas
and Regehr [27] developed a more generic Intent fuzzer that
can mutate arbitrary fields of Intent objects. Mahmood et al.
[28] adopted the white-box fuzzing approach by decompiling
Android apps to identify interesting inputs and running them
on Android emulator instances on the cloud. However, these
and similar tools [29]-[32] focus on the robustness of Android
apps, and can not be directly applied to fuzz Android system
services.

To the best of our knowledge, the few notable studies on
fuzzing Android system services are the ones by Cao et al.
[33] and Feng et al. [34]. Cao et al. [33] focus on the input
validation of Android system services. Their tool, Buzzer,
sends crafted parcels (i.e., the basic messages on the Binder)
to invoke AOSP system services with fuzzed arguments. Since
Buzzer was an early tool of its kind, it relied on manual
efforts for several tasks, such as to identify the arguments of
service methods, to avoid fuzzing on methods that could not be
invoked by third-party apps anyways (due to limited permis-
sions), etc.. Feng et al. [34] developed BinderCracker, a more
sophisticated parameter-aware fuzzer that can automatically
understand the format of Binder messages and that supports
more complex communication patterns over the Binder (such
as callback objects returned by system services). However,
both these tools are purely black-box approaches and do not
gather any information about the internal coverage of the tested
services, thus missing the opportunity to improve the efficiency
of fuzzing. This problem has only been partially addressed
by Luo et al. [35], which recently developed a successor of
Buzzer that exploits symbolic execution. However, this tool is
not applicable to vendor customizations, since it is designed
to run outside the Android system and requires the availability
of the target source code.

IV. TooL DESIGN

The Chizpurfle tool architecture is presented in Fig. 1. It
includes six software modules running on the target Android
device, that are implemented in Java and C. These modules
cooperate to profile the target system service and to generate
fuzz inputs according to test coverage. We designed Chizpurfle
to be as less intrusive as possible, and to only require root
permissions for few debug operations discussed in this section.

The Methods Extractor produces a list of system services
and their methods, marking the custom vendor services as
described in Section II. It also provides a map between services
and their hosting processes. The Seed Manager iterates over
the custom vendor services and methods, and it provides initial
inputs (seeds) for testing them. The Fuzz Input Generator



takes a seed (either the initial seed, or any previous worthwhile
input) and generates new actual inputs for the target method,
by applying fuzzing operators to the values of method param-
eters. Then, the Test Executor applies the fuzzed inputs to the
target service, while the Instrumentation Module keeps track
of the test coverage. The outcomes of the test are collected,
analyzed, and saved by the Output Analyzer. It also provides
feedback to the Seed Manager with seeds for the next test
iteration. Finally, the Orchestrator provides a simple user
interface for Chizpurfle.

A. Orchestrator

The Orchestrator is the only part of Chizpurfle that runs
outside the target Android device (i.e., on the user’s work-
station), that loads and controls the other modules using
the Android Debug Bridge (ADB) [36] through an USB
connection. Chizpurfle minimizes the amount of interactions
through ADB, since this connection is notoriously unstable,
and we could not rely on it due to potential side effects of
fuzzing. Thus, Chizpurfle is detached from the ADB shell
process right after it is started, in order to avoid any issue
related to the ADB connection. Test data are recorded on a
local file on the device and later pulled from the target device
by the Orchestrator; the Orchestrator periodically checks the
progress of fuzz tests by briefly connecting with ADB and
inspecting the logs of Chizpurfie.

We also need to prevent the early termination of Chizpurfle
in the case of crashes of system processes. If Chizpurfle ran as
a standard Android app, it would be bound to Zygote, which
is a daemon process that serves as parent for all Android
processes, and which provides a pristine copy of the Android
Runtime environment for its children through copy-on-write
mechanism. When the Zygote dies, all children processes die
as well. Thus, we run Chizpurfle modules in a distinct Android
Runtime from the Zygote, that is launched by the app_process
utility (the same utility that starts Zygote at boot). This enables
Chizpurfle to keep working and gather data even if key system
processes fail due to vulnerabilities in vendor customizations.

B. Method Extractor

The Method Extractor gets the list of services from the
Service Manager in a vendor-customized Android device, and
it compares them with a blueprint of the AOSP with the same
Android version.

The Android OS provides a service-oriented architecture
to manage its several services, as shown in Fig. 2. At boot
time , @) the Service Manager registers itself as the “context
manager”, by sending a special message to the Binder driver,
which is the main inter-process communication mechanism
provided by the Linux kernel of Android. Then, @) a service
provider publishes its services by sending a message through
the Binder driver to the Service Manager. When a client
application wants to contact a service, @) it first queries the
Service Manager with the service name, and then @ it invokes
the service directly through Binder.

SERVICE
MANAGER

SYSTEM
SERVICE SERVICE
SERVICE (AOSP or CLIENT

LIST VENDOR)

N Al
N N

'S 'S userspace
ELERRRER NN

kernel

L@

BINDER DRIVER

Fig. 2. Android Services and Service Manager.

The Method Extractor queries the Service Manager on the
target device to get the list of all registered services, including
customizations. By iterating on these names, it retrieves the list
of service descriptors. In case of Java-implemented services
(supported by the current version of the tool), a service
descriptor is the string name of the Java Interface that is im-
plemented by that system service (e.g., the Package Manager
service implements the android.content.pm.IPackageManager
Java Interface). Then, Java Reflection API is used to inspect
the definition of the interfaces, and to get the signatures of
the methods in the service. The methods that are not in the
AOSP are marked as “vendor customizations” and considered
for testing.

Another task of the Method Extractor is to map every
service to the system process that hosts that service. This
mapping is obtained by hooking calls to the Service Manager,
before the services are registered. In particular, we focus on
invocations of the function:

static int

svc_can_register (const uintl6_t =name,
size_t name_len,
pid_t spid,
uid_t uid)

where spid is the PID of the process that wants to register
the service named name. The functions of Service Manager
are hooked by copying a breakpoint handler in the memory
address space of the process and by modifying the symbol
table to hijack function invocations (the technique to modify
the memory of the target process is further discussed in the
next subsection about the Instrumentation Module). We force
the system services to be published again (thus invoking the
Service Manager) by restarting the Zygote process, which in
turn forces the restart of system processes and their services.
If the method returns 1, then the service has been correctly
registered, and the Methods Extractor retrieves the name of
the process and saves the mapping.



C. Instrumentation Module

The Instrumentation Module interacts with the process that
runs the target service, in order to collect information about
the test coverage. We designed the Instrumentation Module
by taking into account the following requirements: (1) it must
be able to intercept the execution of branches by the target
service, in order to identify any new code block covered by the
test; (2) it has to attach to system processes that are already
running, since the life cycle of Android services (including
vendors’ ones) cannot be directly controlled by external tools
such as Chizpurfle, and since most of these service are already
running since the boot of the target device; and (3) it should
be able to instrument proprietary services on the actual device
(which is the goal of this study), thus excluding any approach
that recompiles the source code or that runs in an emulated
environment.

We initially explored both hardware and software solutions
to measure coverage. Hardware solutions typically take advan-
tage of special CPU features for debugging purposes, such as
performance counters. The ARM processors (the CPU family
also adopted in Android devices) provide the CoreSight on-
chip trace and debug utility to trace the execution of program
[37]. However, this specific feature is not mandatory for ARM
CPUs, and it is not available on the CPUs typically used in
Android devices. Thus, we could not use the hardware support
from the CPU, since this solution could not be applied on
commercial devices.

We then focused on software-based solutions, which typ-
ically have a higher run-time overhead, but they can also
provide more flexibility and have less requirements about the
underlying hardware. In particular, we based our design on the
ptrace system call of the Linux kernel: it allows a debugger
process (in our context, the Instrumentation Module) to inspect
and to write on the memory address space and CPU registers
of the debuggee (in our context, the process that runs the
target system service). Typically, debugging tools use ptrace
to install software breakpoints, by replacing an instruction of
the debugged program with another instruction that stops the
program and triggers a breakpoint handler function.

We leverage the ptrace mechanism to profile the target
code through dynamic binary rewriting, which is a general
technique used by virtual machine interpreters. The program
is divided in basic blocks, which are small groups of se-
quential machine instructions that end with a branch. When
the exit branch is reached, the control flow is returned to
the interpreter, which retrieves the next basic block, applies
some transformations (such as just-in-time compilation and
instrumenting the final branch instruction) and moves the
control flow to the block; or the exit branch directly jumps
to the next basic block if it has already been processed and
cached. In our context, we apply the same principle to keep
track of which code blocks are executed, in order to compute
the test coverage.

Fig. 3 shows the instrumentation and tracing mechanism
used by Chizpurfle. The Instrumentation Module injects into

CHIZPURFLE

TARGET PROCESS
INSTRUM.
MODULE PROCESS
________ wuect i | STALKER THREAD
SERVER
FOLLOW
[ttt it it |- Eer
for each test LIl
for each block
ST REWRITE
________________ i ADDRESS
sToP [CESSEE
T T T T T habpResses:
||
N 4 YW\

Fig. 3. Chizpurfle Instrumentation and Tracing Mechanism.

the target process a small C library by using ptrace; then,
before restoring the execution of the traced process, it starts a
new thread in the process to run the library code, which starts
the “stalker” server. This server opens a local socket to talk
back with the Instrumentation Module. At the beginning of a
test campaign, Chizpurfle sends a message over this socket to
enable the tracing of any thread in the target process. Then,
the stalker server rewrites the current code block; from this
point on, the code blocks will return the control flow to the
injected library, which will rewrite the next code block that
will be executed by the target. For every rewritten block, the
tool adds instructions to log the memory address of the code
block, in order to record that the block has been covered. The
list of the addresses of covered code blocks is collected by the
stalker server in a global data structure. At the end of testing,
Chizpurfle sends a message to disable logging, and to let the
stalker send back to Chizpurfle the list of code blocks that
have been covered.

In the current version of Chizpurfle, we implemented this
approach using the Frida framework [38]. Frida is a generic
dynamic instrumentation toolkit that provides basic facilities
for dynamic binary rewriting, in order to let developers
to insert probes in a program for debugging and reverse-
engineering purposes. We have ported Frida to 64-bit ARM
processors in order to let it run on actual Android devices, and
we extended the code rewriting process to trace the coverage
of code blocks.

D. Seed Manager

The Seed Manager is in charge of providing seeds (i.e., ini-
tial inputs for the target service) to the Fuzz Input Generator.
The Seed Manager manages a priority queue of seeds to be
fuzzed, which are ordered with respect to their score 7. This
score is assigned by the Output Analyzer (as discussed later
in §IV-G), after that the seed has been submitted to the target,
and that the coverage for the input has been measured. The
score 7 represents the number of new blocks executed by the



traced process. If 7 is greater than zero, the seed is fed back
to the Seed Manager to be further fuzzed in subsequent tests.

This workflow represents the cornerstone for applying evo-
lutionary algorithms to drive fuzz testing towards deeper
testing of the target service. To select the next seed from
the priority queue, we adopt an exploitation-based constant
schedule, where a seed is not used more than once [39].
The termination criterion of Chizpurfle is to stop when all
seeds have been consumed from the queue, and no more
seeds are available for further fuzzing. Moreover, Chizpurfle
represents a basis for applying several algorithms for fuzz
testing, e.g., by changing or tuning the queue scheduling policy
and the termination criterion. This is a valuable opportunity
for research on fuzzing in mobile devices, as the heuristics
and algorithms adopted by existing tools (such as AFL) have
evolved over the years on the basis of empirical experience
and experimentation with alternative approaches, which is
facilitated by tools such as Chizpurfle.

At the beginning of a fuzz testing campaign for a target
method, the Seed Manager creates a new initial seed with
empty (for primitive types) or null (for object types) values.
This initial seed is not mutated, but immediately submitted as
test input. This input will trigger the target method to cover
an initial set of m code blocks; then, the input is immediately
fed back to the Seed Manager to be used as first actual seed
with score 7. The steps to fuzz a vendor service method are
summarized in Algorithm 1.

Algorithm 1 fuzzing a vendor service method
Input: Service s, Method m, Process pid
1: parameters = createlnitialSeed(s, m)
2: outputs = executeTest(s, m, parameters, pid)
3: analyzedOutputs = analyzeAndSave(outputs)
4: priorityQueue = {}
5: priorityQueue.push(parameters, analyzedOutputs.r)
6
7
8

: repeat
parameters, = priorityQueue.pop()
fori=1ton do

9: parameters’ = mutate(parameters)

10: outputs = executeTest(s, m, parameters’, pid)

11: analyzedOutputs = analyzeAndSave(outputs)

12: if analyzedOutputs.m > 0 then

13: priorityQueue.push(parameters’,
analyzedOutputs.7)

14: end if

15 end for
16: until priorityQueue == {}

E. Fuzz Input Generator

The Fuzz Input Generator receives a seed to be mutated,
and generates inputs for the Test Executor. Several inputs are
obtained from the same seed, by applying different fuzz op-
erators. The number of new inputs to generate is proportional
to the score 7 of the seed, and the fuzz operators are selected
according to the types of the parameters of the target method.

We implemented in Chizpurfle a rich library of fuzz operators,
including operators that are often adopted in existing fuzzing
tools (including the ones in Section III). For each parameter
type, the fuzz operators are:

o Primitive types (boolean, byte, char, double, float, integer,
long, short): substitute with a random value, substi-
tute with the additive identity (0), substitute with the
multiplicative identity (1), substitute with the maximum
value, substitute with the minimum value, add a random
delta, subtract a random delta, substitute with a special
character (only for char);

e Strings: substitute with a random string, substitute with
a very long random string, truncate string, add random
substring, remove random substring, substitute random
character from string with special character, substitute
with empty string, substitute with null;

e Arrays and Lists: substitute with array of random length
and items, remove random items, add random items,
apply fuzz operator on a item value according to its type,
substitute with empty array, substitute with null;

o Objects: substitute with null, invoke constructor with
random parameters, apply fuzz operator on a field value
according to its type.

For Object types, the Fuzz Input Generator provides ad-
ditional ad-hoc fuzzers for important specific classes defined
by the Android OS. For example, the android.content.Intent
class has a specific fuzzer that injects into the fields of an
Intent (such as actions, categories and extras) special values
that have a meaning for the Intent (e.g., ACTION_MAIN and
ACTION_CALL for the Intent actions) [40]; and the fuzzer for
the android.content. ComponentName class takes into account
which components are installed on the target device, in order
to use and to mutate valid component names during fuzz
testing. For all the other classes, a generic object fuzzer
uses the Java Reflection API to create new objects using the
class constructor with random parameters, and to invoke setter
methods of the class to place random values in the fields of
the object.

The Fuzz Input Generator keeps a list of all the inputs
generated so far, in order not to submit again the same input to
the test executor. Seeds are mutated by using a random number
generator to select fuzz operators and to guide them (e.g.,
new values replacing the previous ones are selected randomly).
These probabilities are tunable using a configuration file.

F. Test Executor

The Test Executor performs tests on the Android device,
by invoking the service method with the input provided by
the Fuzz Input Generator. It generates a proxy for that service
using the IBinderObject associated to the target service. Before
invoking the target method, it flushes the logs collected by
the Android OS (the logcat, which is a global collector for
log messages produced both by user applications and system
processes [41]). Then, Chizpurfle sends the start message to
the stalker server in the target process (§IV-C) and calls the
target method. Any potential exception thrown by the service



is caught, so that the Test Execution is not aborted in the case
of service failures. After the method call, it sends another
message to the stalker to stop the tracing, and retrieves logs
from the logcat. The steps of the Test Executor are summarized
in Algorithm 2.

Algorithm 2 execute test

Input: Service s, Method m, Parameters p, Process pid
Output: Outputs o

: flushLogcat()

. startBranchTracing(pid)

. try: call(s, m, p)

catch e: o.setException(e)

: o.branches = stopBranchTracing()

: o.logs = stopLogcat()

O U W =

G. Output Analyzer

The Output Analyzer parses the outputs produced by the
Test Executor, and stores the information and results of the
tests on a file on the target device.

This component analyzes the logs to identify any failure that
has been triggered by the fuzzing test. A failure is detected
using the following criteria:

o A/F messages: the system generates log messages with
a high-severity level (either assert (A) or fatal (F)) [41],
[42]; such messages are never generated in failure-free
conditions, and should be considered as failure symp-
toms;

« ANR messages: the system generates a log message
that reports an ANR condition (i.e., Application Not
Responding) [43]; this condition denotes that the fuzzed
input from the Test Executor propagated and triggered a
long-running operation or an indefinite wait on the main
thread of some process;

o FATAL messages: the system logs a message reporting
a “FATAL EXCEPTION”, which denotes an uncaught
exception on the service side.

It must be noted that we focus on errors logged by system
processes rather than the Test Executor; since the Test Executor
stimulates the system service with invalid input, it is correct for
the service to raise exceptions and not to provide any service to
the Test Executor. Thus, we do not consider these exceptions
as failure symptoms as they indicate the correct handling of
wrong inputs.

Another check for failure detection is made when the Test
Executor retrieves the Binder proxy for the tested service
(§8IV-F). Chizpurfle registers a callback, using the linkToDeath
of the IBinder API for the service [44], to receive a notification
if the Binder object of the service is not available. This
happens when the process that hosts the target service dies.

The Output Analyzer component also analyzes the list of
block addresses reported by the Instrumentation Module. It
keeps trace of all blocks covered by tests so far, and compares
them with the block addresses of the current test. If new blocks

are detected, the test input is assigned a score 7, and the new
blocks are added to the list of covered blocks.

The outcomes of this analysis, along with general informa-
tion about the test inputs and the tested service, are saved on
a file. If the input receives a non-zero 7 score, the input is
sent to the Seed Manager for the next iteration of the fuzzing
loop. The steps of the Output Analyser are summarized in
Algorithm 3.

Algorithm 3 analyze and save results

Input: Outputs o, DeathRecipient r
Output: AnalyzedOuput ao
I: a0 =0
2: if (“FATAL” or “ANR” in ao.logs.message) or (“F” or
“A” in ao.logs.level) then
3:  ao.hasFailures = true
4: end if
5: if ao.deathRecipient.deathNotified then
6:  ao.serviceDead = true
7: end if
8: newBranches = ao.branches \ getExecutedBranches()
9: if size (newBranches) > 0 then
10:  addExecutedBranches (newBranches)
11:  ao.m = size (newBranches)
12: end if
13: saveToFile(ao)

H. Further Optmizations

When we initially applied the Chizpurfle tool to the Sam-
sung Galaxy S6 Edge, we needed to address an important
technical problem: the system services (including the ones
from vendors’ customizations) execute in the context of a few
system processes, along with dozens of other threads, such as
the system_server process, which contains about 160 threads.
Unfortunately, instrumenting all these threads at the same time
causes a high overhead, that would slow down the execution
of the fuzz tests.

We enabled Chizpurfle to avoid instrumenting threads that
are unrelated to the target service being tested. We base this
approach on a simple, yet effective heuristic to detect unrelated
threads: for all the services running in the context of the same
process of the target service, we tokenize the name of the
service, and retain the tokens that belong only to that specific
service (for example, in the case of CocktailBarService, we
retain the tokens “Cocktail” and “Bar”); then, we get the
names of the threads of the process, using the comm entry
in the proc file system; finally, we identify the threads whose
name include the tokens of services different that the one under
testing (for example, we exclude the “CocktailBarVisi” thread
when testing services different than the CocktailBarService).
The associations between threads and services can be easily
reviewed by Chizpurfle’s users before starting the testing
campaign. This heuristic reduces the run-time overhead of
the instrumentation and only avoids threads that are likely
unrelated to the service under testing.



We did another minor optimization to avoid few false pos-
itives that happened during the tests. During our preliminary
tests, some false positives occurred when the Android device
reached a low battery level, that caused the Android OS
to switch to battery-saver mode. This change, together with
the workload of fuzz tests, slowed down the smartphone,
and caused spurious ANRs in processes not related to the
service under testing. We prevented these false positives by
periodically checking the battery level and pausing the tests if
the level is too low. We carefully checked and reproduced all
the other failures described in next sections, to assure that our
results are free from false positives.

V. EVALUATION CAMPAIGN

We applied Chizpurfle to a well-known commercial smart-
phone, the Samsung Galaxy S6 Edge. Before testing, we
updated this device with the most recent Android OS officially
released by Samsung based on Android 7 “Nougat”. First, we
perform a fuzz testing campaign on all the service methods
introduced by Samsung. Then, we perform additional tests
to evaluate the performance overhead and the test coverage,
compared to a pure black-box approach.

A. Bugs in Samsung Customizations

Chizpurfle detected 2,272 service methods from Samsung
customizations. In this first experimental campaign, Chizpurfle
performed 34,645 tests on these methods. The tool reported
that 9 tests caused failures, which are summarized in TA-
BLE II. We executed again the tests, and we found that the
failures were reproducible. Then, we analyzed the failure mes-
sages reported on the logs, which include uncaught exceptions
and the stack trace at the time of the failures. Despite the
source code not being available, we notice that the failures
affected high-privilege system processes, and were caused by
2 distinct bugs (respectively, the first 4 failures, and the other
5 failures).

The first bug was found in the service spengestureservice,
hosted by the system_server process. The bug was triggered
by the method injectinputEvent. To understand the role of this
method, we analyzed the AOSP, and found a similar method
(with the same name and minor differences in the method
signature) provided by the InputManager class of AOSP,
which handles input devices such as keyboards. This method
“injects an input event into the event system on behalf of an
application” [45]. It is likely that the method with the same
name in the spengestureservice performs the same operation
for input events from the “S Pen” in Samsung devices [46].

One of the input parameters for this method is an array
of android.view.InputEvent objects, which is an abstract class
for representing input events from hardware components.
During the fuzz testing campaign, Chizpurfle detected a FATAL
EXCEPTION when this array is non-null and non-empty, and
at least one of its elements is null (instead, the service does
not fail if the array is simply null or empty). This input causes
the service to throw a NullPointerException that is not caught,
causing a crash. We found that this bug is fully reproducible.

The bug can have two different effects on the Android OS,
depending on which process will consume the injected events
from the Input Manager. If the events are consumed by the
process com.android.systemui, the uncaught exception triggers
the restart of the process, and a black screen of the user
interface for a few seconds. If the events are consumed by
android.ui, which is a thread of the system_server process, the
fuzzed inputs has a higher impact: it crashes the system_server
and causes a restart of the whole Android device. Several
method calls with exactly the same parameters values can be
arbitrarily managed in both ways.

The second bug was triggered up when fuzzing the method
calllnVoIP of the Samsung’s voip service. The method likely
is used to place a call with Samsung WE VoIP app [47],
a stock application that provides voice-over-IP for corporate
users. The method takes as input parameter a string that repre-
sents a SIP address URI (such as “sip:1-999-123-4567 @ voip-
provider.example.net”). Chizpurfle found that input strings
that include specific SQL control expressions (similarly to
single quotes in SQL injection) trigger an uncaught SQLLite-
Exception by the com.samsung.android.incallui process. This
process is a customized version of the com.android.incallui
process of the AOSP, which handles the UI that appears during
a call, providing several on-screen functions. The uncaught
exception crashes the com.samsung.android.incallui process,
cutting off any ongoing call.

B. Comparison with Black-Box Fuzzing

We compared Chizpurfle with the black-box approach, to
provide a baseline for evaluating our gray-box approach. We
first analyze the performance overhead of Chizpurfle, that is,
the relative slow-down of fuzz testing when applying the gray-
box approach. The overhead includes the time for generating
inputs and profiling the coverage of the tests. During the whole
test campaign on the Samsung Galaxy S6 Edge, Chizpurfle
measured the overall time spent for executing the test. An
individual test takes on average 6.65 seconds, while testing a
whole method takes on average 527.60 seconds.

To get the test duration that would be obtained with black-
box fuzzing, we performed a second round of tests by dis-
abling both the Chizpurfle’s Seed Manager and Instrumenta-
tion Module (the two distinctive elements of gray-box test-
ing). This usage mode Chizpurfle (denoted as ChizpurﬂeBB)
is equivalent to perform black-box fuzzing, without neither
collecting coverage nor using coverage for selecting the test
inputs. In ChizpurﬂeBB, the inputs are instead generated
randomly. For each target method, we used ChizpurﬂeBB by
applying the same number of inputs that were also generated
by the gray-box Chizpurfle for that method.

By comparing the time to run Chizpurfle®® with the time
to run the gray-box Chizpurfle, we obtain a performance slow-
down per service of 11.97x on average. To put this number into
context, we must consider that the performance slow-down
is inline with other tools for dynamic binary instrumentation.
For example the Valgrind framework (which also uses dynamic
binary rewriting for complex analyses, such as finding memory



TABLE 11

DETECTED FAILURES IN EVALUATION CAMPAIGN

TESTID | INPUT FAILURE

Q
<§ g FATAL EXCEPTION: mainProcess: com.android.systemui, PID:
g A 12884 java.lang.NullPointerException: Attempt to invoke virtual
o 5 7 {0, -2147483648, array of android.view.InputEvent | method ’long android.view.InputEvent.getEventTime()’ on a
2 _E: objects with a null item, false, NULL} null object reference at com.samsung.android.content.smartclip.
go g SmartClipRemoteRequestDispatcher.dispatchInputEventInjection
§ = (SmartClipRemoteRequestDispatcher.java:201)[...]
.g g FATAL EXCEPTION: mainProcess: com.android.systemui, PID:
g A 4025 java.lang.NullPointerException: Attempt to invoke virtual
I 5 2 {-715676118, -1, array of android.view.InputEvent | method ’long android.view.InputEvent.getEventTime()’ on a
2 §: objects with a null item, false, NULL} null object reference at com.samsung.android.content.smartclip.
gu g SmartClipRemoteRequestDispatcher.dispatchInputEventInjection
§ = (SmartClipRemoteRequestDispatcher.java:201)[...]
Q
2 g !@*** FATAL EXCEPTION IN SYSTEM PROCESS: android.ui
) 2 java.lang NullPointerException: ~ Attempt to  invoke  virtual
g 5 162 {0, 91, array of android.view.InputEvent objects with | method ’long android.view.InputEvent.getEventTime()’ on a
2 § a null item, false, NULL} null object reference at com.samsung.android.content.smartclip.
‘é’o 3 SmartClipRemoteRequestDispatcher.dispatchInputEventInjection
§ =) (SmartClipRemoteRequestDispatcher.java:201)[...]
Q
2 ‘g !@*** FATAL EXCEPTION IN SYSTEM PROCESS: android.ui
§ A java.lang NullPointerException: ~ Attempt to  invoke  virtual
o ‘é 186 {-188, 91, array of android.view.InputEvent objects | method ’long android.view.InputEvent.getEventTime()’ on a
2 k] with a null item, true, NULL} null object reference at com.samsung.android.content.smartclip.
go g SmartClipRemoteRequestDispatcher.dispatchInputEventInjection
§ k=) (SmartClipRemoteRequestDispatcher.java:201)[...]

=) é;;gzz\'ii%éi Z Z?};&%ggiié Oé;iiiii;;iii FATAL EXCEPTION: mainProcess: com.samsung.android.incallui,
R= s 54 00155;; ”\/”°iu0007#\u001a)-(9\1-1(.)01é7L PID: 23452 android.database.sqlite.SQLiteException: near \", \":
S = \ e ) y syntax error (code 1): , while compiling: SELECT reject_number

s 226)-£22£c2?5\u000128555p?0Tg?} 22Wu FROM reject_num WHERE reject_number="\u000e?? [...]

S 221=21?W\u0019,, . ?2?\u0011202?} Ject Ject = o L

<) {?2_22\u0010_>\u0001\bK) 2} ?t’ 2?R?G} T FATAL EXCEPTION: mainProcess: com.samsung.android.incallui,
K= S 55 <T\u0001?\u001b??22?2?N?d?Vv??Z\u0002?e?| PID: 24643 android.database.sqlite.SQLiteException: near \" 22?2\ ":
g = ?222022#2\u001ds??2\r?2222g\u0016\u0002| syntax error (code 1): , while compiling: SELECT reject_number

s ?2\u0002?ed\_, ., u0010?} FROM reject_num WHERE reject_number="0012\u0 [...]

a, i:zz;‘égglﬁ ;\zggggiigzgli iggg}g%ggzi s FATAL EXCEPTION: mainProcess: com.samsung.android.incallui,

G e IOGON Y 001822 - 0 062 no 0 O 0 3; »~ | PID:25500 android.database.sqlite.SQLiteException: unrecognized to-
g1z | ‘:;T”éé%%i:?boi 66}151\ oobélsuoowéii ken: \"" 22922\u001a22222\b2VN6g?, “6\u0011222Lx?\"
- = e frDaAd u v u (code 1): , while compiling: SELECT reject_number FROM re-

= | piiing )

s 00012!2G\u0002?2\u00,_,_,,00}?_22222v{? ject_num WHERE reject. number=" 2792210 ...

A\"Z5? 'v?)?2£22\u0006n6239} - - T

<) N R FATAL EXCEPTION: mainProcess: com.samsung.android.incallui,
= |2 g é;;i;i\ggz6:&%%2?1#0;;;\7?0%%61;39 o F| PID: 32445 android.database sqlite. SQLiteException: near \" 222\ ":
g é fodau S v cu PAUbL syntax error (code 1): , while compiling: SELECT reject_number

= 011x\u001c?\u001dTa0_U ?h?322222\}| Y bl ng d

s e : =T T TT e FROM reject_num WHERE reject_number=" ?2\u0011 [...]

N FATAL EXCEPTION: mainProcess: com.samsung.android.incallui

A~ ! 5

G {7271.6212(<81>2P! :?\u00052\ /26" \u000 PID: 5745 android.database.sqlite.SQLiteException: near
=) > 105 32#\u0000??2+c\u0016?\u001lenr2??|\£?2?2? \"E2d?272\ " de 1) hil dine:
S = 1£@221-:2°221\u000£\u001dWSm?2? @2d???\": syntax error (code 1): , while compiling:

= ey N, . SELECT reject_number FROM reject_num WHERE

3 ;222\u000£2\u0019\u000£2?N[?\u001£fWv} reject_number= 2002@b }W\u000e [...]

leaks and race conditions), when applied on the SPEC CPU
2006 benchmark [48], causes an average slow-down of 4.3x
when the program is simply executed on the Valgrind virtual
machine; and an average slow-down of 22.1x when performing
memory leak analysis. Such overhead when running tests is
rewarded by a higher bug-finding power, and it is in many
cases accepted by developers as shown by the widespread
adoption of Valgrind in automated regression test suites in
open-source projects [49]. In our context, the slow-down still
allows the Android system to execute without any noticeable

side effect, thus preserving the intended behavior of the test
cases. Fig. 4 shows the performance overhead for the two
services previously discussed (voip and spengestureservice),
and for other 10 randomly-chosen custom vendor services,
which cover the 10% of all the custom methods.

We then evaluate the gain, in terms of test coverage (the
higher, the better), obtained by applying gray-box fuzzing
instead of black-box fuzzing, given the same time budget T’
available for both forms of fuzz testing. To measure the test
coverage of black-box fuzzing on the vendor customization,



performance

8x

6X

4x

2x .
ox

X

voip
AA!

sb_service

spengestureservice
semclipboard
mobile_payment
SecExternalDisplayService
AODManagerService
gamemanager
edm_proxy
SecurityManagerService
enterprise_policy

vendor services

Fig. 4. Performance Overhead of Chizpurfle.

the only possible approach is to apply the Instrumentation
Module of Chizpurfle (but without using the Seed Manager,
in order to fuzz inputs in a random way). We denote this mode
as ChizpurﬂeBB+COV.

However, we need to take into account that code instru-
mentation slows down the execution of the black-box tests,
and thus simply applying ChizpurﬂeBB+COV for the same
amount of wall-clock time of the gray-box Chizpurfle would
unfairly penalize the black-box approach. Therefore, to obtain
a fair estimate of the test coverage for black-box fuzzing,
we compensate for the slow-down due to instrumentation by
granting it a higher time budget than gray-box fuzzing. The
time budget is obtained by multiplying the time budget of
gray-box fuzzing for the slow-down due to instrumentation
(while 11.97x is the average slow-down according to the
experiments discussed above, here we applied to each method
its slow-down factor).

On average, Chizpurfle covers 2.3x more code than the black
box approach. The gain in terms of test coverage is shown
in Fig. 5 (which focuses on the same services analyzed in
Fig. 4). By looking at the code coverage gain per method
(see Fig. 6), we noticed that Chizpurfle was more effective
on those methods that take complex data in inputs, such as
semclipboard’s method updateFilter takes as input an object
of type android.sec.clipboard.IClipboardDataPasteEvent for
managing clipboard data. Instead, in the case of simpler
methods, such as getters and setters, the gray-box approach
has a minor impact on test coverage.

VI. CONCLUSIONS

This paper presented Chizpurfle, a novel gray-box fuzzer
designed to test custom system services from Android vendors.
This tool exploits dynamic binary instrumentation to measure
test coverage and to drive the selection of fuzz inputs. The
experimental results on a commercial Android device from
Samsung showed that the gray-box approach can discover

o N
X X

£
@©
S, 5x
S
@ 4x
0)
3 3x
o
[}
© 2X
Q
o
" I I . .
0x
o ® -
g 8 & ¥ £ 8 § & 8 5 ¢
e = z £ & T > 5 & g =
= [ o) = a o] [<% [} = D
© [Z ) ! Qa 0 T @ ) (%}
£ s E = 5 ¥ £ o 5
s ¥ =& T o EN @ 5 )
@ £ = 2 )
£ > © aQ 7] = ©
@ 2 2 c 5 0] a c
o a @ = o o (]
E z 5 § E 2
c a a 2>
£ IS 2
(53 2] =
2 < 3
le D
3 w
%]
vendor services
Fig. 5. Code Coverage Gain of Chizpurfle.

© R
= X

7x
£
@ 6X
(=]
S
o 5x
©
2
g 4x
o
S
S 3x
o
2x
Tx
0x
[} o %] @ (%] o c c bl
2 5 'DL o) [ o [
2 538 0§ ;g,gggg’?m S &3 @
55X B GE YL o= zx o 29 @ 22 2
] S S > [ o O 9 Cc
o ® N 2T 2 oL o H S o g <
= ST 4L 2D 2l o o 'Z 59 = 35
[a X 6 Qo FQ = 5= 2P g 2= 82
cg O 22 92 58 0 =92 B 5w E 2
o 5 == 28 T o 52 93 2 b )
EERSEE SEEE SS9 B 820G 0% .3
dn I 3 =0 o 3 = = 3 S
U = o © @ © T w
E2 205 £8 o5 S& 2% 9 o8 28
= = a5 -] 5 s %
oE aT a a T
T 55 © 2 SR =%}
- 22 ca < £c
T £c ca S
] L © o2
£ £ c =
o Il ]
3 g = 2
[ Q
) n Y a
D <
@ ko]
(=]
vendor services methods
Fig. 6. Code Coverage Gain of Chizpurfle per Method.

relevant bugs, that it has a reasonable overhead, and that it can
increase the test coverage compared to the black-box approach.

The gray-box fuzzing represents a promising approach
for testing proprietary Android services in more depth. The
Chizpurfle tool represents a valuable opportunity for research
on fuzzing in mobile devices, by allowing to experiment with
different heuristics for evolutionary fuzzing (e.g., for deter-
mining when to stop fuzzing, for prioritizing seeds, and for
selecting fuzz operators), as happened for similar fuzzing tools
that were applied in different context than mobile devices.
Another possible extension of Chizpurfle is to include support
for system services implemented in C; since there is not
reflection API, other reverse engineering techniques should be
used in order to extract the method signatures.



ACKNOWLEDGMENT

This work has been supported by UniNA and Compagnia
di San Paolo in the frame of Programme STAR (project
FIDASTE), and by the COSMIC project (DIETT department).

[1]
[2]

[3]
[4]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

REFERENCES

Samsung, “Bixby,” May 2017. [Online]. Available: http://www.samsung.
com/global/galaxy/apps/bixby/

HTC, “HTC U Ultra- HTC Sense Companion,” May 2017.
[Online].  Available: http://www.htc.com/us/smartphones/htc-u-ultra/
#SenseCompanion

Motorola, “Moto Enhancements,” May 2017. [Online]. Available:
https://www.motorola.co.uk/products/moto- z#moto-enhancements
Huawei, “Huawei P9 co-engineered with leica reinvent smartphone
photography,” May 2017. [Online]. Available: http://consumer.huawei.
com/en/mobile-phones/p9/index.htm

LG, “LG X Cam,” May 2017. [Online]. Available: http://www.lg.com/
uk/mobile-phones/lg-K580

Samsung, “Samsung Pay,” May 2017.
/Iwww.samsung.com/us/samsung-pay/
Android, “Android Security Bulletin,” May 2017. [Online]. Available:
https://source.android.com/security/bulletin/

[Online]. Available: http:

LG, “LG Security Bulletins,” March 2017. [Online]. Available:
https://lgsecurity.lge.com/security_updates.html

Motorola, “Moto  Security  Updates,” March  2017. [On-
line]. Available: https://motorola- global-portal.custhelp.com/app/

software-upgrade-security/g_id/5593

Samsung, “Samsung Android Security Updates,” March 2017. [Online].
Available: http://security.samsungmobile.com/smrupdate.html

Common Vulnerability and Eposures, “CVE-2016-2060,” May 2017.
[Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi’name=
CVE-2016-2060

B. P. Miller, L. Fredriksen, and B. So, “An Empirical Study of the
Reliability of UNIX Utilities,” Communications of the ACM, vol. 33,
no. 12, pp. 32-44, 1990.

Michal Zalewski, “American Fuzzy Lop (AFL),” December 2016.
[Online]. Available: http://lcamtuf.coredump.cx/afl/

C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems
Programs.” in OSDI, vol. 8, 2008, pp. 209-224.

E. Bounimova, P. Godefroid, and D. Molnar, “Billions and billions of
constraints: Whitebox fuzz testing in production,” in Proc. 2013 Intl.
Conference on Software Engineering.

Google Inc., “OSS-Fuzz - Continuous Fuzzing for Open Source
Software,” 2017. [Online]. Available: https://github.com/google/oss-fuzz
P. Koopman and J. DeVale, “The exception handling effectiveness of
POSIX operating systems,” IEEE Transactions on Software Engineering,
vol. 26, no. 9, 2000.

J.-C. Fabre, F. Salles, M. R. Moreno, and J. Arlat, “Assessment of COTS
microkernels by fault injection,” in Proc. Dependable Computing for
Critical Applications 7, 1999.

K. Kanoun, Y. Crouzet, A. Kalakech, A.-E. Rugina, and P. Rumeau,
“Benchmarking the dependability of Windows and Linux using Post-
Mark workloads,” in Proc. 16th IEEE Intl. Symp. on Software Reliability
Engineering, 2005.

S. Winter, C. Sarbu, N. Suri, and B. Murphy, “The impact of fault models
on software robustness evaluations,” in Proc. 33rd Intl. Conference on
Software Engineering. ACM, 2011.

D. Cotroneo, D. Di Leo, F. Fucci, and R. Natella, “Sabrine: State-based
robustness testing of operating systems,” in Proc. IEEE/ACM 28th Intl.
Conf. Automated Software Engineering (ASE), 2013.

Google, “syzkaller - linux syscall fuzzer,” May 2017. [Online].
Available: https://github.com/google/syzkaller

P. Godefroid, M. Y. Levin, D. A. Molnar et al., “Automated whitebox
fuzz testing.” in NDSS, vol. 8, 2008.

S. Bhansali, W.-K. Chen, S. De Jong, A. Edwards, R. Murray, M. Drini¢,
D. Mihocka, and J. Chau, “Framework for instruction-level tracing and
analysis of program executions,” in Proc. 2nd Intl. conference on Virtual
Execution Environments. ACM, 2006.

C. Mulliner and C. Miller, “Fuzzing the Phone in your Phone,” Black
Hat USA, June, 2009.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

H. Ye, S. Cheng, L. Zhang, and F. Jiang, “Droidfuzzer: Fuzzing
the android apps with intent-filter tag,” in Proc. Intl. Conference on
Advances in Mobile Computing & Multimedia, 2013.

R. Sasnauskas and J. Regehr, “Intent Fuzzer: Crafting Intents of Death,”
in Proc. Joint Intl. Wksp. on Dynamic Analysis (WODA) and Software
and System Performance Testing, Debugging, and Analytics (PERTEA),
2014.

R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek, and
A. Stavrou, “A whitebox approach for automated security testing of
android applications on the cloud,” in Proc. 7th Intl. Wksp. Automation
of Software Test (AST). 1EEE, 2012.

A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An
Empirical Study of the Robustness of Inter-Component Communication
in Android,” in Proc. IEEE/IFIP Intl. Conf. on Dependable Systems and
Networks (DSN), 2012.

K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie, “Pscout: Analyzing the
Android Permission Specification,” in Proc. ACM Conf. on Computer
and Communications Security, 2012.

K. Yang, J. Zhuge, Y. Wang, L. Zhou, and H. Duan, “IntentFuzzer:
detecting capability leaks of android applications,” in Proc. 9th ACM
Symp. on Information, Computer and Communications Security, 2014.
Y. Hu and 1. Neamtiu, “Fuzzy and cross-app replay for smartphone
apps,” in Proc. 11th Intl. Wksp. Automation of Software Test. ACM,
2016.

C. Cao, N. Gao, P. Liu, and J. Xiang, “Towards Analyzing the Input
Validation Vulnerabilities associated with Android System Services,” in
Proc. 31st Annual Computer Security Applications Conf. ACM, 2015.
H. Feng and K. G. Shin, “Understanding and defending the Binder attack
surface in Android,” in Proc. 32nd Annual Conf. on Computer Security
Applications. ACM, 2016.

L. Luo, Q. Zeng, C. Cao, K. Chen, J. Liu, L. Liu, N. Gao, M. Yang,
X. Xing, and P. Liu, “Context-aware System Service Call-oriented
Symbolic Execution of Android Framework with Application to Exploit
Generation,” arXiv preprint arXiv:1611.00837, 2016.

Android Studio, “Android Debug Bridge,” April 2017. [Online].
Available: https://developer.android.com/studio/command-line/adb.html
ARM, “CoreSight on-chip trace and debug,” May 2017. [Online].
Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.
set.coresight/index.html

Ole André V. Ravnés, “FAIDA,” February 2017. [Online]. Available:
https://www.frida.re

M. Bohme, V.-T. Pham, and A. Roychoudhury, “Coverage-based grey-
box fuzzing as markov chain,” in Proc. 2016 ACM SIGSAC Conference
on Computer and Communications Security.

AndroidXRef, “Cross Reference: Intentjava,” May 2017. [Online].
Available:  http://androidxref.com/7.0.0_r1/xref/frameworks/base/core/
java/android/content/Intent.java

Android Developers, “Logcat Command-line Tool,” May 2017.
[Online]. Available: https://developer.android.com/studio/command-line/
logcat.html

——, “Write and View Logs with Logcat,” May 2017. [Online].
Available: https://developer.android.com/studio/debug/am-logcat.html
——, “Keeping Your App Responsive,” May 2017. [Online]. Available:
https://developer.android.com/training/articles/perf-anr.html
AndroidXRef, “Cross Reference: IBinderjava - linkToDeath,”
May 2017. [Online]. Available: http://androidxref.com/7.0.0_r1/xref/
frameworks/base/core/java/android/os/IBinder.java#257

AndroidXRef, “Cross Reference: InputManager.java -
injectInputEvent,” May 2017. [Online]. Avail-
able:  http://androidxref.com/7.0.0_r1/xref/frameworks/base/core/java/
android/hardware/input/InputManager.java#833

Samsung, “What are the advantages of S Pen,” May 2017. [Online].
Available: http://www.samsung.com/global/galaxy/what-is/s-pen/

——, “WE VoIP Application for Business,” May 2017.
[Online]. Available: http://www.samsung.com/us/business/
business-communication-systems/unified-communication- solutions/
IPX-LSMP/STD

N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight
dynamic binary instrumentation,” in ACM Sigplan notices, vol. 42, no. 6.
ACM, 2007.

D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and K. S. Trivedi,
“Fault Triggers in Open-Source Software: An Experience Report,” in
Proc. 24th Intl. Symp. Software Reliability Engineering (ISSRE), 2013.



