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Abstract. We propose a privacy-aware multimodal framework for de-
tecting operational risks in last-mile delivery routes by integrating spa-
tial, temporal, and semantic information. Our method fuses geospatial
embeddings derived from latitude—longitude coordinates or representa-
tive zip-code centroids, ensuring GDPR compliance when precise loca-
tions are withheld, with temporal features from delivery attempt times-
tamps and semantic embeddings extracted by a locally hosted large lan-
guage model (LLM). To capture localized delivery failure patterns, we
incorporate sequence-to-pattern mining at the zip-code level, enabling
the model to recognize high-risk operational contexts. This unified ar-
chitecture is designed to maintain predictive robustness even when par-
tial location data is missing, ensuring routes remain analyzable despite
privacy constraints. Empirical evaluation on real-world logistics datasets
comprising approximately 2,000 routes, each visiting between 2 and 26
customers, shows that multimodal embeddings significantly enhance pre-
cision in detecting early failures compared to random baselines during
validation. However, test-set results reveal generalization challenges and
overfitting risks, suggesting that further work is needed on data augmen-
tation, embedding fine-tuning, and regularization strategies. By enabling
early, data-driven risk detection, our approach has the potential to sup-
port more reliable and sustainable last-mile delivery operations.
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1 Introduction

Last-mile logistics is one of the most challenging supply chain stages, which in-
volves transportation from local depots to customer doorsteps. This final leg
often represents a significant portion of total delivery costs, driven by routing
complexity, urban congestion, and unpredictable customer behavior, such as cus-
tomers being unreachable despite prescheduled time slots.
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Accurate prediction of operational risks, such as delivery failures, is crucial
to cost efficiency and service quality. We specifically measure precision around
the first failure event to assess how reliably the model signals early warnings.
This metric is particularly important in contexts involving large or heavy prod-
ucts that must be unloaded in a strict sequence, and early detection of potential
failures can help prevent cascading disruptions to subsequent deliveries and mit-
igate costly downstream effects. This remains difficult for two key reasons. First,
logistics data often contain private information, including precise customer loca-
tions and personalized delivery instructions, which are tightly regulated under
frameworks such as the General Data Protection Regulation (GDPR) in Europe.
Second, in practice, some customers withhold precise geographic location data
for privacy reasons, leaving gaps that can render route-level machine learning
models unusable if they rely exclusively on accurate spatial signals.

In this paper, we tackle both challenges with a privacy-aware multimodal
architecture that integrates spatial, temporal, and semantic information to pre-
dict route-level risks. Even when precise coordinates are unavailable, we substi-
tute them with representative latitude-longitude values derived from zip-code
centroids, ensuring GDPR compliance and preserving model functionality. Our
experiments on real-world logistics data show that this multimodal approach can
improve early risk detection in modern last-mile delivery networks.

1.1 Related Work

Classical optimization approaches to last-mile delivery are modeled as variants
of the Vehicle Routing Problem (VRP), which optimize cost-minimizing delivery
routes subject to constraints such as vehicle capacity, time windows, or maximum
tour length. These models provide strong theoretical guarantees, are computa-
tionally expensive, and do not take advantage of historical data collected during
logistics operations. For example, previous work by Dettenbach et al. [2], pro-
posed maintaining backup plans to handle interruptions before delivery begins.
However, such strategies are limited in capturing real-world uncertainties, par-
ticularly those arising from delivery failures due to customer unavailability or
localized risk patterns.

To address these limitations, recent research uses machine learning (ML)
and deep learning (DL) techniques to leverage data-driven insights for predictive
accuracy and adaptability in last-mile logistics. Sharma et al. [I1], for instance,
employed random forests to predict service failures driven by customer behaviors
such as absence or refusal; however, their work remained at the customer level
and did not integrate route-level spatial dependencies. Florio et al. [3], used the
"pool and select" algorithm to build candidate delivery sequences using heuristics
based on entry and exit zones, then select the most promising sequence through
a learned regression model. Other works have used gradient-boosted trees [7]
and deep learning for delivery time predictions [I][4].

Most of the previous work in ML for last-mile logistics focuses on demand
forecasting, predicting estimated time of delivery, and planning routes [10][9]
[6][8][12][5]. Research aimed at predicting delivery failures, such as a customer
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not being at home, is relatively limited. This gap arises for several reasons. Failed
deliveries are rare in many operational datasets, making supervised learning
difficult. Another reason is that success and failure are often tied to privacy-
sensitive signals such as at-home presence, responsiveness, or special delivery
instructions, which fall under GDPR protections.

In our work, we do not use time windows as a predictive feature, as each
company defines and enforces time windows differently. Instead, we rely on the
actual time of delivery attempt recorded in historical data, which provides more
precise and interpretable temporal signals. Our approach focuses on predicting
service-level delivery failures by modeling interactions with preceding stops along
the route. Using a proprietary logistics dataset in which delivery outcomes are
explicitly labeled, we demonstrate that it is feasible to learn meaningful risk
patterns in real-world, privacy-compliant settings.

Unlike prior studies that assume the full availability of precise latitude and
longitude data, we explicitly address scenarios where customers withhold ge-
ographic location information due to privacy concerns. To our knowledge, no
existing multimodal architecture integrates a privacy-aware fallback mechanism
that substitutes missing coordinates with representative zip-code centroids while
maintaining predictive performance. Our work fills this gap by explicitly design-
ing for robustness under partial spatial data availability.

The rest of the paper is organized as follows. Section [2| presents the training
pipeline and model architecture, including input representations, graph atten-
tion layers, and transformer encoding. In Section [3] we describe the experimental
setup covering hyperparameters, embedding dimensions, sequence mining set-
tings, baseline comparisons, and performance analysis. Section [d] concludes with
a summary of contributions and directions for future work.

2 Model

2.1 Overview

We propose a multimodal neural architecture designed for early detection of
operational risks in last-mile delivery. The model integrates geospatial, seman-
tic, temporal, and pattern-based signals into a unified framework and explicitly
models spatial relationships via graph attention mechanisms. Our architecture
emphasizes early detection by combining position-aware loss functions and eval-
uation metrics tailored for sequential prediction.

2.2 Input Representations
Each time step ¢ in a delivery sequence is represented by the following modalities:

— Geospatial features: GPS coordinates are encoded into a high-dimensional
latent space
x3%° € Reee

using a pretrained LocationEncoder, inspired by vision-language models, to
capture spatial context beyond the raw coordinates.
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— Semantic embeddings: Contextual information from textual delivery in-
structions is extracted using a frozen LLaMA 3.2 1B model, yielding embed-
dings

Xilama c Rdllama.

Since decoder-only models like LLaMA do not produce a single pooled em-
bedding by default, we extract the hidden state of the first token from the
final layer to serve as a sentence-level representation. This vector is normal-
ized before being concatenated with other features

— Temporal features:
e Time-of-day cyclic features: hour and minute encoded via sine and

cosine transformations to model periodicity,

. hour hour . minute minute
sin | 27 , cos|2m , sin |27 , cos|2m
24 24 60 60

Day-of-week cyclic features: day-of-week encoded similarly with sine
and cosine transforms,

sin (27rdcéw> ,  Cos (27rdcéw> ,

where dow € {0,...,6}.

Weekend indicator: a binary feature that indicates whether the day
is Saturday or Sunday.

Time segment one-hot encoding: hour-of-day is discretized into five
segments {[0,7),[7,12),[12,17),[17,21),[21,24)}, encoded as a one-hot

vector.

N———

These features are concatenated to form the temporal feature vector

Xgime e Rdtime .

— Pattern embeddings: Summaries of frequent delivery success and failure
patterns are encoded as

Xpattern c Rdr)attern.

All features are concatenated to form the time-step input:

where

geo

din = dgeo + dilama + dtime-

2.3 Architecture

The sequence {x;}._; is first linearly projected into a shared latent space of
dimension dode1:

hEO) = Win Xt + biy.

When pattern embeddings are available, we inject them as additive biases:

hIEO) « h,gO) + Wpattern Xpattcrn.
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Fig. 1: Model Architecture

Graph Attention Layers. To capture spatial and topological dependencies among
stops, we process the sequence with a two-layer Graph Attention Network (GAT).
Importantly, edges operate over the flattened latent representations of stops
across the batch:

h&* = GAT (flatten(h'?)), E),

where E is an edge index defining stop-to-stop connectivity. The GAT aggre-
gates neighborhood information in latent space and reshapes the output back to
sequence form. Residual connections yield:

hgl) _ hiO) + h%at.

Transformer Encoding. The enhanced embeddings {hgl)} are fed into a multi-
layer Transformer encoder, capturing temporal and global sequence dependen-
cies:

{h¢"}T_ = TransformerEncoder ({h,ﬁ”}le) .
Finally, a linear layer projects to scalar logits:

:gt = Wout h?nc + bout~

2.4 Training Objectives

Our primary loss is a binary cross-entropy applied at each time step. However,
to emphasize early detection and reduce delayed corrections, we introduce the
Sequential Penalty-Aware Contextual Loss (SPaCeLoss).



6 P. Gupta et al.
SPaCeLoss. Let the predicted logits be y € REXT. Compute probabilities:
p=o0(y)
Define binary cross-entropy:
BCE(p,y) = —[y - log(p) + (1 —y) - log(1 — p)].
The focal modulation term is:
pt=p-y+(1-p)-(1-y),

yielding:
FocalWeight = o (1 — pt)”.

Hence the focal loss:
FocalLoss = FocalWeight ©® BCE(p, y).
To penalize late mistakes, SPaCeLoss introduces positional penalties:
Wpos = linspace(1.0, 0.1, T').

Scaled by Bpos:
Penalty = Bpos - Wpos-

After optional normalization, the final loss is:

SPaCeLoss =

B T

1

BxT Z Z FocalLoss; ; x Penalty,.
i=1 t=1

2.5 Evaluation Metrics

We evaluate the model with metrics prioritizing timely risk detection:

Precision Around First Failure. To quantify how early and accurately the model
signals the first failure, we compute a distance-weighted precision defined as:

N
Precisiongst-fai] = pp if PP >0,

0, otherwise.
where:

— PP = number of sequences with any predicted failure,
— s; = score for sequence 7 reflecting how close the first predicted failure is to
the first true failure.
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Formally, let y; € {0,1}T denote thresholded predictions and y; € {0,1}7 the
ground truth. Define:

FirstFail; = min { t ‘ Yit = 0} .
Similarly, define:
FirstPred; = min { t ’ Vit = O} .
Then, for each sequence ¢ where any failure is predicted, we compute:

1
1+ |FirstPred; — FirstFail;|

8i

This yields a precision score close to 1 when the predicted failure is very close to
the true first failure, and decreasing as the prediction deviates further in time.
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Fig.2: Training and validation loss curves for full and baseline models, along
with Precision Around First Failure metric on validation dataset.
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3 Experiments

3.1 Training Setup

All experiments were conducted on an Apple M1 Mac with 16 GB RAM, run-
ning macOS Sequoia 15.3.1. Our software environment comprised Python 3.10,
PyTorch 1.13.1, and GeoPandas 0.13.2. We trained and evaluated models on
real routing data from a logistics partner collected in 2025. To enable stratified
splitting into training, validation, and test sets, we defined a helper variable in-
dicating whether a route contained at least one failure (present in approximately
3.5% of routes across all splits). This variable was dropped after stratification
and not used during model training or evaluation.

Model training, evaluation, and deployment were managed via containerized
services using Docker, including PostgreSQL for data storage and MLflow for
experiment tracking and model management. This environment ensured repro-
ducibility and streamlined workflow management.

3.2 Hyperparameters

Input and Embedding Dimensions We use the following feature dimensions: Geo-
Clip embeddings of size 512, LLaMA embeddings of size 2048, pattern features
of size 10, and temporal features of size 12.

Sequence Mining Settings Failure patterns are mined with minimum frequency
5 and maximum length 5, whereas success patterns use a minimum frequency of
50 and maximum length 5.

Transformer Architecture The model employs a Transformer with hidden di-
mension dyodel = 16, 2 attention heads, and 2 layers.

Training Hyperparameters We train with batch size 16, learning rate 5 x 1074,
momentum 0.9, dropout rate 0.5, for 20 epochs using the Adam optimizer.

3.3 Baselines

We evaluate our model on two embedding configurations: (i) Full, which uses
both GeoClip and LLaMA embeddings, and (ii) RandomBoth, which replaces
both embeddings with random vectors as a baseline.

3.4 Performance Analysis

Table [T] reports validation metrics from the best checkpoints under two embed-
ding configurations: Full embeddings (GeoClip + LLaMA) and RandomBoth
(random embeddings). The Full model clearly outperforms the RandomBoth
baseline on all key metrics during validation. The PrecisionFirstFail metric,
measuring the precision of detecting the very first failure event, is particularly
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Table 1: Validation performance comparison of embedding configurations.

Embedding Setting PosWeighted Acc|PrecisionFirstFail| Validation Loss
Full (GeoClip + LLaMA 3.2 1B) 0.97 0.88 0.0259
RandomBoth (Random embeddings) 0.49 0.20 0.0470

important operationally. The Full model achieves high precision (0.88), indicat-
ing it reliably flags early failures with relatively few false positives. In contrast,
the RandomBoth baseline struggles to detect failures accurately, reflected by
low precision (0.20), despite a lower overall positional accuracy. The validation
loss curves (Figure corroborate these findings, showing that the Full model
converges to a lower loss, indicating stronger learning of failure signals.

3.5 Test Set Performance

To assess generalization, we evaluated both models on a held-out test set with
the same metrics. Table [2 summarizes the results. On the test set, both models

Table 2: Test performance comparison of embedding configurations.

Embedding Setting PosWeighted Acc|PrecisionFirstFail| Test Loss
Full (GeoClip + LLaMA 3.2 1B) 0.60 0.21 0.0312
RandomBoth (Random embeddings) 0.62 0.21 0.0502

see a marked drop in PrecisionFirstFail compared to validation, with the Full
model’s precision falling from 0.88 to 0.21. This drop suggests the Full model
is overfitting to the training and validation data and struggles to detect early
failures reliably on new, unseen routes. The RandomBoth baseline maintains low
precision consistent with its validation performance, indicating it relies largely
on predicting the majority no-failure class. These results highlight the gap be-
tween validation and real-world generalization, underscoring the challenge of
developing robust models in highly imbalanced, complex operational settings.

3.6 Discussion

Our emphasis on PrecisionFirstFail reflects the practical need to minimize false
alarms in early failure detection. High precision ensures that flagged failures are
credible, enabling planners to trust and act on predictions without unnecessary
operational disruptions. Traditional metrics such as recall or F1 score are less
aligned with this objective, as missing some failures (lower recall) is less critical
than avoiding false positives that trigger costly interventions. The Full model’s
strong validation precision confirms that multimodal embeddings (GeoClip +
LLaMA) enhance the model’s ability to capture meaningful failure signals. These
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findings indicate that while frozen embeddings provide strong representations for
initial training, fine-tuning may be required to capture task-specific signals and
ensure consistent generalization to unseen delivery routes.

3.7 Overfitting and Generalization

The decline in test precision around first failure suggests overfitting by the Full
model, potentially because pretrained GeoClip and LLaMA embeddings were
used without fine-tuning for our specific delivery failure detection task. These
embeddings may encode features that do not generalize well across different
routes, customers, or operational conditions. Future work will address this by
fine-tuning embeddings, augmenting data, applying regularization, and incorpo-
rating contextual features such as weather, traffic, and driver-specific data to
improve robustness on unseen data.

4 Conclusion and Future Work

We proposed a privacy-aware multimodal framework for early detection of de-
livery failures in last-mile logistics. Our model integrates spatial-temporal pat-
terns, semantic embeddings from large language models applied to customer
notes, and sequential dependencies across delivery routes. Unlike prior work fo-
cusing on individual delivery points, our route-level modeling captures localized
operational risks informed by delivery sequence context. Empirical evaluation
on industrial data shows that incorporating GeoClip and LLaMA embeddings
improves precision of early failure detection on validation data compared to ran-
dom baselines. However, using these embeddings out-of-the-box leads to overfit-
ting, limiting generalization to unseen routes. Future work includes fine-tuning
pretrained LLM and geospatial embeddings for logistics-specific patterns; em-
ploying oversampling or synthetic data to better capture rare failures; applying
regularization and architectural constraints to mitigate overfitting; and integrat-
ing contextual signals (e.g., weather, traffic, driver data) to enrich risk modeling.
These efforts aim to improve model robustness and enable earlier, more reliable
detection of delivery failures in real-world last-mile operations.
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