
ROS-FM: Fast Monitoring for the Robotic
Operating System(ROS)

Sean Rivera, Antonio Ken Iannillo, Sofiane Lagraa, Clément Joly, Radu State
SnT, University of Luxembourg

firstname.lastname@uni.lu

Abstract—In this paper, we leverage the newly integrated
extended Berkely Packet Filters (eBPF) and eXpress Data Path
(XDP) to build ROS-FM, a high-performance inline network-
monitoring framework for ROS. We extend the framework
with a security policy enforcement tool and distributed data
visualization tool for ROS1 and ROS2 systems. We compare the
overhead of this framework against the generic ROS monitoring
tools, and we test the policy enforcement against existing ROS
penetration testing tools to evaluate their effectiveness. We find
that the network monitoring framework and the associated
visualization tools outperform the existing ROS monitoring tools
for all robots with more than 10 running processes and that the
monitoring tool uses only 4% of the overhead of the generic
tools for robots with 80 processes. We further demonstrate the
effectiveness of the security tool against common attacks in both
ROS1 and ROS2.

I. INTRODUCTION

Robotics systems are usually larger systems of intercon-
nected, distributed components. The role of robotics in society
has continuously increased, spanning from industrial robots,
consumer robots, commercial robots, to vehicles and drones.
The market for robotics is ever-growing with a value of $115B
in the year 2019 [28] and an expected CAGR of 25%.

To effectively monitor such robotic systems at run-time,
special monitoring software is required. However, not many
concepts and solutions have been proposed to monitor the
components of robotic systems, especially in ROS (Robot
Operating System). Security in ROS is an active concern, with
few fully implemented solutions [13]. Any such monitoring
systems have to be flexible, scalable, and secure, without
sacrificing run-time. Currently, most monitoring software is
processing intensive and slow, a double disadvantage on
cyber-physical systems, particularly robotic systems. There are
no current solutions that offer both monitoring and security
without a severe processing impact.

In recent years, there have been many advancements in the
field of process monitoring and analysis for Linux systems in
the form of the extended Berkeley Packet Filter (eBPF) and
the eXpress Data Path (XDP). These new technologies allow
for the execution of limited software in kernel space at lower
points in the data travel path, allowing for efficient and scalable
processing. The processing capabilities of XDP and eBPF are
utilized to develop ROS-FM, a new monitoring framework that
provides a modular, scalable, and secure monitoring software
for ROS that outperforms current solutions.

Problem statement How can we effectively monitor a
robotic system without impacting performance? Can we secure
the same system while staying within performance constraints?

Key challenges Designing a monitoring framework for ROS
that answers these questions raises several challenges. Firstly,
the framework must be easy to apply to a robotic system, as
otherwise users will not be incentivized to use it (usability).
Next, it must support all of the functionality that existing tools
do, or it will be just a domain-specific tool (applicability).
Additionally, it must be extensible to cover the large cyber-
physical ecosystem without imposing major development costs
(extensibility). Finally, it must be lightweight and efficient, as
robotic systems operate in time-constrained environments on
limited hardware (space and time efficiency).

In this paper, we demonstrate the benefits that eBPF and
XDP can provide for robotic systems and propose a new
system to leverage them. We build a new drop-in monitoring
solution for ROS, a common robotic framework, which we
then extend with two modules to show the full power available
to developers.

The rest of the paper is organized as follows. Section II
introduces and reviews the existing background in ROS and
network framework. Section III provides the motivation and
objectives of this paper. Section IV describes the related work.
We detail our ROS monitoring tool in Section V. We then
present the experimental results in Section VI. Section VII
concludes and gives some future research.

II. BACKGROUND

A. ROS

The Robot Operating System (ROS) [24], ROS1 by de-
fault, is a meta-operating system framework for developing
robotic systems (see Figure 1) [27]. ROS provides independent
computing processes called nodes, with the help of a master
node, parameter server, and middleware layer. These systems
allow nodes to communicate using topics and services. A
more thorough analysis of the ROS framework is discussed
by Rivera et al. [27].

ROS master and parameter server. The ROS core utility
roscore contains the ROS master and parameter server and
the node rosout. The master node tracks all the offered
topics and services and maintains a map of the location of all
nodes. Unfortunately, the master node is unable to enforce this
map creating many vulnerabilities [14] [13] for ROS system.
The parameter server acts as a global variable repository for



Fig. 1: ROS1/ROS2 architecture [24].

the nodes. The master node communicates through XMLRPC
function calls, which carries several vulnerabilities.

ROS nodes. ROS uses nodes to define individual processes
running within the system. Each node is designed to be self-
contained and must follow a specific set of guidelines to
integrate with the rest of the system.

Topics. Topics are the primary form of communication in
ROS. Topics define the communication path with the ROS
message framework by allowing nodes to join as either a pub-
lisher or a subscriber, to allow communication between nodes.
To create a topic, a node informs the master node whether
it is publishing or subscribing to a topic. If it is publishing,
the exact port it will be publishing from is communicated.
The master responds with a list of all publishing nodes (for
subscribers) or all subscribers (for publishers), and then it
notifies the remainder of the relevant nodes. The master server
maintains a list of all topics and associated nodes and allows
subscribers to connect to topics by opening a port. Anyone
can publish any data on topics as there is no access control
for topics beyond the data type MD5 hash.

Middleware layer. The middleware layer includes the com-
munication system TCPROS/UDPROS. Each node must im-
plement either TPCROS [25] and/or UDPROS [26]. TCPROS
and UDPROS are extensions of the TCP and UDP protocols,
with TCP being the preferred method with UDP being cus-
tomizable by users. All TCPROS headers provide the name
and an MD5 hash of the message type, utilizing the MD5
hash to ensure that the node is sending the correct type of
message. Additionally, the initiator of a TCPROS connection
must provide its name, the topic or service it wishes to
connect to, and the expected message communication type.
The ROS command-line interface allows interfacing with the
robot system by launching processes as nodes.

Messages. Nodes communicate with each other using mes-
sages. Messages can hold a set of data that can be sent to
another node via a typed field. Messages can be integers,
floating points, Boolean, or custom by the developer.

ROS2. The second version of ROS, namely ROS2, is under
development by the ROS community. The goals of ROS2 are
to enhance the performance of multi-robot communications
and provide real-time capabilities. The novelty in ROS2 is the
modification of the middleware layer which uses the Data Dis-
tribution Service (DDS) as its networking middleware.ROS2
offers the following advantages regarding ROS1:

• Real-time requirements: initially designed for single robot
control with no real-time and using reliable connections.

• Distribution: ROS1 uses a centralized discovery, the ROS
master (single point of failure). In contrast, ROS2 is fully
distributed including discovery.

• QoS: uses quality-of-service settings to handle lossy
networks and efficient intra-process communication.

• New use cases operating in distributed environments:
autonomous vehicles, multi-robot swarms,...etc.

However, as ROS2 is still under development, it is still
unclear when a complete functional switch from ROS1 to
ROS2 will occur. Presently there exists a helper node called
ros1-bridge which allows developers to use hybrid systems of
ROS1 and ROS2 to ease the transition. Thus, in this paper, we
focus on problems, and corresponding solutions, of both ROS
frameworks. For the rest of the paper, we use ROS to refer to
both ROS1 and ROS2.

Typical ROS system. A typical ROS system is made up
of ’multiple’ packages (based on robot purpose) per robot
[15], with each package containing an average of 3.8 nodes
[30], and each node communicating on 5-8 topics [31]. These
figures are measured on ROS1 but can be assumed to apply
to ROS2 as well.

B. BPF/eBPF

The Berkeley Packet Filter (BPF) [20] is a high-performance
limited instruction set for a bytecode virtual machine running
inside the OS, to implement fast programmatic network filter-
ing in kernel space. eBPF [3] is an extension to the classic
BPF framework with hooks for generic event processing
in the kernel, profiling programs, and libraries. This grants
developers a greater number of processing capabilities for
more complex applications.

eBPF allows a user-space application to inject code in the
kernel at run-time. This means that the injection is performed
without recompiling the kernel or installing any optional kernel
module. The eBPF interpreter offers a limited selection of the
standard C functionality, which allows the kernel to formally
verify each section of the eBPF code. This limited selection
does not allow loops and formally checks all memory accesses
to ensure that the user-space code does not interfere with
normal kernel functioning or the functioning of normal ap-
plications. Several kernel hooks are available for the network
stack, such as the traffic classifier tc [10], or the eXpress



Fig. 2: All available bcc/BPF tracing and performance tools [18].

Data Path (XDP) [3], [16] (described in the next section), a
low-level hook component executed before the network layer,
used for DDoS mitigation [36].

eBPF programs can use helper functions [4]. These helpers
are functions implemented in the kernel to interact with the
system. Using such helpers, eBPF programs can push and
retrieve data to or from the kernel, and rely on mechanisms
implemented in the kernel. For instance, the helpers can be
used to print debugging messages, to interact with eBPF maps,
or to manipulate network packets. Figure 2 shows all available
bcc/BPF tracing and performance tools.

C. XDP

eXpress Data Path (XDP) [16] is a new programmable layer
in the kernel network stack. It offers a run-time programmable
packet processing inside the kernel instead of kernel-bypass.
XDP provides access to functions implemented in network
drivers and offers an API for fast packet processing across
hardware from different vendors.

The XDP system offers several compelling advantages over
DPDK and other kernel bypass solutions [16]. Specifically:

• XDP requires no changes to network configuration and
management tools and retains the kernel security bound-
ary.

• Ease in adding XDP execution hooks.
• Acceleration of critical performance paths when selecting

the kernel network stack features such as the routing table
and TCP stack.

• Transparency to applications running on the host, en-
abling the deployment of security rules such as DoS
attacks.

• It can be dynamically re-programmed, i.e the features
can be added/removed on the fly without interruption of
network traffic.

• Less overhead with lower CPU usage and power saving
implications.

• It provides a Linux friendly alternative to DPDK. It
allows the user to custom and process packets that scale
linearly with CPU cores.

XDP is actively used. Cloudflare integrated XDP into their
DoS mitigation pipeline [7]. Suricata have XDP plugins [37].
Facebook released to use XDP as a high-performance layer 4
load balancer [17].

D. PCP/Vector
Vector [22] is a browser-based performance monitoring and

analysis tool, developed by Netflix for massive-scale real-time
system monitoring. It depends on the Performance CoPilot
(PCP) [2] system, a standard way to collect and analyze
different types of system metrics. As a data visualization
tool, the two components are easily configurable and very
lightweight.

III. MOTIVATION

Our goal is to demonstrate the power of eBPF/XDP and re-
place the existing ROS command line tools with a monitoring
system that can maintain metrics on every single topic and
service within a ROS system while adding minimal overhead
for the embedded systems. Our system has to be extensible as
well, to allow users to maintain the flexibility that is inherent to
ROS. We demonstrate the flexibility of our system by building
two separate modules that target common use cases with ROS
systems, security, and monitoring.

While the topic of security in ROS has been gaining more
academic attention over the past few years [13] [23] [35] the



field is still relatively new. Currently, security for ROS1 is
centered around hardening nodes and applying cryptography
to communications, though there has been some research into
applying security at the network layer. Our module builds on
existing network layer security for ROS [27] but demonstrates
the performance improvement available with the use of eBPF.

There are many options available for monitoring multiple
ROS systems, with the most common being AWS metrics [5]
and Overseer [29]. While both of these options do support
monitoring capabilities for ROS, they both have performance
comparable to the native command-line ROS tools. We demon-
strate a module that performs better than the native monitoring
tools, that can be scaled to similarly large numbers of robots.
Additionally given that the ROS ecosystem is currently in a
state of transition between ROS1 and ROS2, we designed our
system to support both, in order to provide longevity and value
to more users.

IV. RELATED WORK

Bihlmaier et al. [8], [9] proposed ARNI, a framework to
monitor and introspect large ROS systems at run-time to
find configuration errors and bottlenecks. Its main purpose is
to collect and visualize information about the message flow
inside the distributed network system. Additionally, it provides
information about system resources such as CPU and memory
for hosts and individual ROS nodes. ARNI allows visualizing
using a dashboard. Additionally, it proposes countermeasures
that can be taken to ensure continued functionality of the ROS
network such as the detection of a violation of a known state.

Monajjemi et al. [21] proposed Drums, a lightweight dis-
tributed monitoring system resources, and a debugging tool for
robot systems. System resources are PIDs or sockets of ROS
nodes. Drums are used as a component for testing, debugging,
and run-time quality-of-service monitoring. However, these
network monitoring tools do not provide:

• deep network information such as net-flow data in a
network system.

• new means of communication.
Rivera et al.[27] proposed ROSDefender, a network layer

monitoring and security tool for ROS systems. It leveraged
SDN components to provide packet-level filtering and analysis,
as well as system-wide anomaly detection and correlation.
While this tool provided both security and monitoring, it came
with a heavy performance cost.

The security for ROS2 is a less established field, however,
Kim et al[19] provided an exploratory look into the challenges
and performance considerations for ROS2 systems with the se-
cure DDS standard. They find that the current implementations
of secure DDS add an overhead of around 100%, which is still
usable for critical computing, however, they did caution that
a more efficient implementation of the standard was possible.

When eBPF was fully implemented into the kernel, the
security possibilities it afforded to researchers were quickly
made apparent. Tian et al.[33] proposed LBM, a security
framework for the Linux peripherals. They demonstrated the
power of eBPF on the USB stack, the Bluetooth and the NFC

peripherals stacks, and showed that rules-based enforcement
was a notable improvement in the security of a Linux system.
Similarly, Deepak et al. [11] demonstrated the viability for
eBPF to replace the traditional iptables firewall application
in Linux. Their solution still requires the manual port con-
figurations that iptables do. Similar research was performed
by Scholz et al.[32], which looked at the performance costs
of an eBPF/XDP firewall vs the traditional iptables firewall.
Finally, Deri et al.[12] was a recent advancement in the use
of eBPF and XDP, for total system monitoring, leveraging
the tables available to integrate information between various
services from a system-level perspective.

Tran et al.[34] looked at the extensibility of TCP systems
with eBPF. They demonstrated that inline packet processing
for TCP was efficient and easy to implement with the use
of eBPF. Given that ROS and ROS2 both leverage a similar
set of TCP options, we found that the framework and hooks
established in this paper were an effective starting out point
for our efforts.

Our work builds on the previous work done to secure
ROS systems in ROSDefender and extends it to support
ROS2, while also building on the eBPF firewall components,
providing the first eBPF firewall for systems that relies on layer
4.5 routing such as TCPROS and DDS. We vastly improve on
the performance of the existing ROS monitoring tools while
improving the overall security of ROS systems.

V. ROS MONITORING TOOL

A. Design Goals and Overview

In this section, we describe the implementation of our fast
ROS monitoring tool, namely ROS-FM. The tool was built to
be able to provide monitoring at its core and an extensible
interface for other functionality. We have implemented both
a security module and a data visualization module. The core
monitoring module is built to monitor the entire ROS system,
leveraging the performance available with eBPF. The security
module is built on XDP and provides rule-based filtering
for ROS systems as well as protection from both network-
level and application-specific attacks against ROS. Finally,
the data visualization module is designed to export all of the
monitoring and security information into Netflix’s Vector[22]
visualization for easy use.

B. Architecture Overview

ROS-FM is built as a central monitoring core and a col-
lection of modules. Our system works by integrating the
ROS core communication code with the kernel. The eBPF
code operates in kernel space to filter all ROS middleware
communications. The core acts as a translation tool between
eBPF and the ROS framework, providing users with multiple
different interfaces to manipulate ROS system data and traffic.
To interact with and communicate with the core, we defined
a simple rule-based Domain-Specific Language, discussed in
Section V-C, as well as data hooks. We built two example
modules to demonstrate the power of this construction, a
monitoring module and a security module. A visualization



module is utilized to export data for visualization in PCP.
Other modules are possible based on user input.

C. Domain-Specific Language

To facilitate user interactions with our system, we defined
and implemented a domain-specific language that provides
access to the underlying eBPF implementation. We leverage
this DSL in both the monitoring and security modules. The
language defines a set of simple rules that are automatically
compiled into eBPF/XDP C by the core. This DSL is defined
using the same primitives as ROS to allow for ease of
application by ROS users.

Each rule in the ROS-FM system is written as a single line
using the grammar outlined in Listing 1. The beginning of
each line specifies the installed module the user wishes to
apply the rule to. As a user installs additional modules, new
rules can easily be designed by simply extending the grammar
specifying the new module. Once specified, an expression is
constructed using ROS native syntax to aid the bridge between
the systems. The user can chain any number of expressions
together to meet a required specificity. As an example, if a
user wishes to constrain access to the ’map’ topic, to a set
group of nodes(A, B, C), then the rules would be:

Filter: TOPIC == "map" && NODE == "A";
Filter: TOPIC == "map" && NODE == "B";
Filter: TOPIC == "map" && NODE == "C";

The majority of the operands are straightforward, regarding
topics, nodes, and messages in the same way as the ROS
framework. However, the LeftOperand ’CUSTOM’ is used for
module-defined behavior.

Listing 1: Domain-Specific Language Grammar
1 Rule :
2 ( Module ’ : ’ E x p r e s s i o n ’ ; ’ )+
3 ;
4
5 Module :
6 ’ F i l t e r ’ | ’ Moni to r ’ | ’ D i s p l a y ’
7 ;
8
9 E x p r e s s i o n :

10 S i m p l e E x p r e s s i o n ’&&’ E x p r e s s i o n
11 | S i m p l e E x p r e s s i o n
12 ;
13
14 S i m p l e E x p r e s s i o n :
15 Le f tOpe rand op Righ tOperand
16 ;
17
18 Lef tOpe rand :
19 ’TOPIC ’
20 | ’NODE’
21 | ’MESSAGE’
22 | ’FIELD ( ’ m e s s a g e _ f i e l d =STRING ’ ) ’

23 | ’ {CUSTOM} ’
24 ;
25
26 op :
27 Equal
28 | NotEqual
29 | C o n t a i n s
30 | C o n t a i n e d I n
31 | Matches
32 ;
33
34 Equal : ’== ’ ;
35 NotEqual : ’ != ’ ;
36 C o n t a i n s : ’CONTAINS ’ ;
37 C o n t a i n e d I n : ’ IN ’ ;
38 Matches : ’MATCHES’ ;
39
40 Righ tOperand :
41 STRING
42 | ’ [ ’ ( STRING)+ ’ ] ’
43 ;

D. eBPF/XDP for ROS

The monitoring module operates on two different layers
of the network stack taking advantage of the capabilities of
XDP and eBPF. Much of the filtering is done at the XDP
level, while the decision making is instead passed up to the
eBPF socket layer and the main processing node. The program
takes advantage of eBPF hash tables to extract data from the
kernel. The first hash table is a mapping of a source port and
destination port, with their respective IP addresses, with a rule
for XDP filtering (Filtering Table). The second table is used
by XDP to keep track of any metrics the user desires (Flow
Metrics Table). With every new packet, the XDP program
updates the relevant stream for these metrics.

Any new packets that are not in the Flow Metrics Table
are passed up to the socket layer with a meta-data note.
The socket layer also maintains two tables of its own. It
maintains a translation table for all of the topics and services
(Topic/Service Table) as well as a lookup table for all of the
rules for the security module (ROS Rules Table). The socket
layer has two core functions: it analyzes all the incoming
packets that the XDP layer is unsure of to determine what the
topic is, and it maintains a lookup table to track the location
of every ROS component. Additionally, if the security module
has been enabled, it takes advantage of the socket layer code
to passively monitor all known node ports to ensure that the
XMLRPC (Section II) exploits do not function. Essentially, the
socket program uses its privileged location to ensure that nodes
do not have the API called out of turn and that any API calls
are from known sources. A visual representation of this system
can be seen in Figure 3, stacked against a representation of
the OSI model for comparison. The ROS Rules Table and
the Flow Metrics Table are the interfaces for the security and
visualization modules respectively.
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Fig. 3: Visual representation of monitoring system

The monitoring module provides the following custom
commands:

• Log: Stores a copy of all matched packets to disk with
the location specified by a user as a RightOperand

• Count: Maintains a running count of all packets that
match the filter

• Average: Maintains a running average of all bytes per
second that match the filter.

• Max: Stores the current largest packet that matches the
filter.

• Min: Stores the current smallest packet that matches the
filter.

ROS2 is built on top of the Data Distribution Service (DDS),
which still operates on the normal Layer 1-4 network stack.
This means that the XDP layer is identical between ROS1
and ROS2 while the socket layer only has to parse different
packet meta-data. We implement both a TCPROS/UDPROS
filter and a DDS filter for the socket filter, as two separate
eBPF programs. While both of these programs can be loaded
simultaneously, our filters cannot trace packets across the
ros1-bridge node, meaning that such traffic is lost. This was
considered acceptable as the ros1-bridge appears to be rarely
used, as do hybrid systems in general.

While eBPF places substantive limitation of both the size
and complexity of programs, we were able to design our
system such that the higher-order processing was done purely
in user-space, with the kernel space programs following the
rules set in place in user-space. This allows for a more exten-
sive development environment, though it does come with the
limitation of a delay before new rules are fully implemented.

For the security module, we take advantage of the ability of
both eBPF and XDP to drop packets faster than user-space pro-
grams. The security nodule extends the monitoring capabilities
at both the socket and XDP layers to add application-specific
content. This is most notable in the socket layer where the
security module, even with no other rules, enforces the ROS
assumption for communication (a node must first communicate
with a master node before it attempts to establish a connection

with another node). This cuts off a wide variety of XML-RPC
attacks against ROS which tend to function by exploiting the
API. This is a vital function ROS does not provide. As an
additional feature, we provide the user the ability to restrict
access to certain function calls so that an attacker cannot
update command line parameters or call a service it is not
supposed to under penalty of dropped packets.

The firewall is configured as a default-deny filter, for all
topics, and nodes that it has a rule for, and default-allow
for those without. The firewall provides the following custom
commands as used in ROSDefender [27]:

• Copy: Transmits a copy of all packets to another desti-
nation

• Limit: Allows the packets to pass up to the limit then
drops the rest

We utilize the functionality of XDP to allow for the enforce-
ment of consistent origins for messages from nodes. Once a
node has been identified on the network, any attempts to spoof
that node from a different source address are detected and
blocked. This functionality extends to anonymous nodes as
we do not intend to restrict any ROS features.

E. Visualization Module

The visualization module is designed to give users a consis-
tently updating sense of their robots’ network traffic and state.
It is designed to allow each robot to export every single metric
that is available through the robot command-line interfaces
automatically, with low overhead. This module exports data
in the PCP format.

We take advantage of Netflix’s Vector’s ability to pull and
plot data from a large number of sources to export chosen
metrics from multiple robots to a convenient location. This
allows users to give an intuitive sense for their robots and
quickly respond to any issues or attacks.

F. Implementation

ROS-FM is implemented in Go using gobpf to access the
eBPF and XDP bindings. Go was chosen due to its higher



performance [1]. Each of the components of the system is
encapsulated in their threads, with shared data buffers to share
information between them. We leveraged many of the efficient
parallelization mechanisms in Go including the channels and
the dynamic rewrite semaphores. The core monitoring program
provides an API for the other subsystems to use to provide a
consistent interface for any modules available.

The security module is implemented as an extension to the
table translation interface between topics and services. Given
a defined rule file, which is structured to be similar to a ROS
launch file, a user can specify which nodes are allowed to
communicate on which topics, call which services, and how
much data nodes are allowed to use to protect against DDOS
and other broadscale network attacks. The rules file for the
security tool does not have to be static and can be updated
regularly to take advantage of existing research in machine
learning and anomaly detection for ROS[27].

The visualization module is implemented as a PDMA plug-
in using the Go PDMA library. It exports to the mmv module
for PDMA which is designed for custom user plug-ins. The
mmv module uses shared memory to monitor processes on
the system. From there, any data visualization tool that can
process PCP can render the data. For the visualization in
Vector, we built templates to render the most common ROS
metrics: number of topics, packets per topic, bandwidth per
topic, and number of nodes and subscribers on a topic over
time.

VI. EXPERIMENTS

We defined the following research questions:
• Q1. What is the overhead of using ROS-FM vs the state-

of-the-art ROS tools?
• Q2. What is the break-even point between the ROS tools

and ROS-FM?
• Q3. How effective is ROS-FM at preventing common

ROS network attacks?
We answered this question by performing the experiments
described in this section.

A. Experimental Setup

We implemented our monitoring system in Go, using the
gobpf library to load the eBPF code. We developed the eBPF
code in C and built it at run time within the code. All
experiments were carried out on a 3.2GHz Intel Xeon E5
virtual machine, 8 GB RAM, running Ubuntu 18.04, running
kernel 5.0.0. We chose to use ROS1 Melodic and ROS2
Crystal, using the release versions of each. All tests were
carried out with the security and display modules enabled to
create a ’worst case’ measure of overhead.

The code is available for download on Github at https://
github.com/seanrivera/ROS_FM.

We performed the following experiments and summarize the
results:

• Compare the overhead induced by the rostopic CLI tools
with the overhead induced by our eBPF tools. We test
the overhead in terms of processing cycles introduced on

a ROS system with 1, 5, 10, 20, 40, 60, and 80 nodes
communicating on 1 topic.

• Repeat the overhead measures with more topics, invoking
the CLI tools on every single topic.

• Compare the accuracy of the eBPF performance tools
against the Amazon ROS performance tools.

• Evaluate the overhead on a ROS2 system.
• Using industry-standard security tools ROSPenTo and

ROS2-SecTest to determine how effective the security
plugin is.

B. Overhead analysis

In analyzing ROS1 overhead, we found that our system has
a processor overhead between 660% for a ROS system with
a single publish/subscribe node pair and 1.6% for a system
with 80 publish-subscribe nodes. It is important to note that
these are the ’worst’ and ’best’ case scenarios respectively. In
the average case (5-8 nodes), our system performs comparably
to all ROS metric tools, while simultaneously providing ad-
ditional security. However, if the user is only concerned with
a single ROS metric, our tool provides the benefit of added
security but has a moderately higher performance overhead.
In cases with ten nodes or more, our tool far outperforms all
others with an overhead of 23%, as compared to 73% for a
single topic or 205% for all metrics.

The high-performance overhead, when compared to the
single node system, is due to the overhead of the userspace
program and the eBPF compiler. The singular ROSTopic
metric’s performance overhead is found to have an overhead
between 34% and 52%. Once you include all of the ROStopic
metrics that are provided by the eBPF program, the perfor-
mance overhead of the CLI tools instead ranges from 105%
and 140% depending on the number of nodes. Once there
are more than 5 node pairs on the system, we find that the
eBPF program outperforms the equivalent ROS tools needed
to provide the same metrics. Additionally, we find that the
eBPF program exceeds the performance of the monitoring
tools completely after 10 nodes pairs have been added to the
system. On the far end of the spectrum, our eBPF monitor
outperforms the standard ROS tools by a factor of 25. We
demonstrate these overheads in Figures 4a and 4b, with Figure
4a demonstrating how many instructions were used over 120
seconds of run-time and Figure 4b demonstrating the overhead
of our tool and the command line tools as compared to the
control 120 second run.

In ROS2, we find that the overhead is instead between 515%
and 15% for the eBPF program and 80% to 110% for the
ROS2 CLI tools. We found that the current ROS2 master and
node paradigm had a higher startup cost but that was offset by
the overhead of parsing the DDS packets. We analyzed ROS2
using the eProsima DDS provider.

C. Security Evaluation

In order to evaluate the security provided by our solution,
we compared it to two existing security tools for ROS1
and ROS2, ROSPenTo[14] and Amazon’s ROS2 Security test



(a) Overhead comparison of ROSCLI tools with ebpf program (b) Plot of the overhead introduced by the the CLI tools vs the
ebf system

Fig. 4: Analysis of ROS1 tools vs ROS-FM

Fig. 5: Node tracking example

node[6]. These two systems are the current best standard test
tools available to our knowledge, though, like all penetration
tools, they are only a starting point for security comparison.
We activated the two tools on a system secured with the XDP
module and summarized our results in the Tables I and II.
We found that we were able to completely negate any attacks
that relied on out of order execution of exploits to the node
API directly, such as those attacks that change the publisher or
subscriber status. Additionally, we were easily able to protect
services from isolation and calls by unauthorized nodes. While
we found that attacks between nodes and the parameter server
were still possible, they were rendered more difficult as they
could only be launched from the same source as the valid
node, and they could only affect the parameters the node
has access to. The addition of PKI renders all attacks against
the parameter server impossible. Unfortunately, our system is

Attack Result
Add publisher Negated

Replace publisher list Negated
Remove publisher Negated

Isolate Service Negated
Unsubscribe Node from Parameter Limited

Update parameter Limited

TABLE I: ROSPenTO

CPU Exhaustion Successful
Network Exhaustion Negated

Disk Exhaustion Successful
Memory Exhaustion Successful

TABLE II: AWS ROS2 SECTest Node

far less effective against the ROS2 SEC-Test attacks, as we
can only negate the network resource exhaustion effects and
provide no protection against the other resource exhaustion
effects at present. A future extension to the security module
could take advantage of eBPF’s socket options in that area to
limit nodes’ access to computing resources.

We confirmed that the addition of Secure-ROS, SROS, and
the secure DDS extension for eProsima do not heavily impact
the performance of the eBPF monitoring tool. However, the
socket layer analysis is more limited in cases where encryption
is used. Once the packets are encrypted we can no longer
enforce limitations on the XMLRPC calls, or any other rules
that require knowledge of the packets.

D. Monitoring Evaluation

We demonstrate the appearance of the exported data for the
number of topics active on a system during normal operation
in Figure 5. The PCP plugin also exports the current number
of packets sent on the topic, the current bandwidth used by a
topic, and the average packet size per topic. All of these topic-



specific metrics are dynamically added and removed from the
PDMA exporter at runtime.

E. Comparison and discussion

We found that the eBPF tool exceeded the performance
of the traditional ROS CLI tools once the system reached a
sufficient level of complexity, and the initial overhead of load-
ing eBPF is proportionally small. We also found that we can
monitor both ROS1 and ROS2 with similar overhead, though
ROS2 carries a higher overall overhead. We demonstrated all
of this while providing both security protection and metric
visualization for users.

VII. CONCLUSION AND FUTURE WORK

In this paper, we proposed a ROS-FM novel system to
monitor robotic systems built on top of ROS. We demon-
strate that this system provides better performance than the
native ROS1 tools and still supports the same monitoring
for ROS2. Furthermore, we build two modular extensions
to the system, a security module, and a data visualization
module that leverages Netflix’s Vector tool to render the results
for easier user experience. We evaluate the security module
against standard security tools for both ROS1 and ROS2 and
show the improvements gained from using our system.

While we believe that our system can be added to any sin-
gular robotic system, there are some improvements we would
like to make for future research. Firstly, we would like to test
our system with additional ROS2’s DDS implementations to
evaluate what other metrics are valuable to track. Furthermore,
we would like to expand our system to cover multiple separate
robots, sharing their hash tables and rules to track distributed
robotic systems. We would also like to build other modules to
address other needs in the robotics community with eBPF.

Our main contributions are:
• Monitoring: An eBPF monitoring framework for robotic

systems with very low overhead.
• Security: A network layer security add-on to extend the

core ROS security model.
• Usability: A PCP plugin to export and easily visualize

robotic statistics.
• Reproducibility: Our code and data are publicly available.
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