
An REE-independent Approach to Identify Callers of TEEs in
TrustZone-enabled Cortex-M Devices

Antonio Ken Iannillo
SnT, University of Luxembourg
Luxembourg, Luxembourg
antonioken.iannillo@uni.lu

Sean Rivera
SnT, University of Luxembourg
Luxembourg, Luxembourg

sean.rivera@uni.lu

Darius Suciu
Stony Brook University

New York, USA
dsuciu@cs.stonybrook.edu

Radu Sion
Stony Brook University

New York, USA
sion@cs.stonybrook.edu

Radu State
SnT, University of Luxembourg
Luxembourg, Luxembourg

radu.state@uni.lu

ABSTRACT
Internet of Things (IoT) devices are becoming increasingly ubiqui-
tous in our lives, from personal health monitoring to house and fac-
tory management. Further, IoT devices are becoming increasingly
complex, and ensuring their security is of paramount importance.
As a result, they started to include Trusted Execution Environments
(TEEs) to protect security-critical IoT operations.

This paper focuses on improving the security of the next-generation
IoT devices by introducing Secure Informer , an identification and au-
thentication mechanism for ARM TrustZone for Cortex-M. Under
Secure Informer , the TEE can directly determine the Rich Execu-
tion Environment (REE) context without introducing additional
communication or dependency on the REE software stack. We
implement our solution for ARMV8-M architecture, showing its
efficacy with no need to change the source code of the REE. Empir-
ical results show that Secure Informer can help mitigate confused
deputy attacks targeting TEE-running services while only incurring
an average 3.2% overhead on the device performance and requiring
an additional 464 lines (52 bytes in the compiled binary file) to the
TEE.

CCS CONCEPTS
•Hardware→ Safety critical systems; • Computer systems orga-
nization→ Embedded software; Processors and memory archi-
tectures.

KEYWORDS
TEE, TrustZone for Cortex-M, confused deputy attack, caller iden-
tification
ACM Reference Format:
Antonio Ken Iannillo, Sean Rivera, Darius Suciu, Radu Sion, and Radu
State. 2022. An REE-independent Approach to Identify Callers of TEEs in
TrustZone-enabled Cortex-M Devices. In Proceedings of the 8th ACM Cyber-
Physical System Security Workshop (CPSS ’22), May 30, 2022, Nagasaki, Japan.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3494107.3522774

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CPSS ’22, May 30, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9176-4/22/05.
https://doi.org/10.1145/3494107.3522774

1 INTRODUCTION
Software vulnerabilities can closely affect our daily lives, as Internet-
of-Things (IoT) devices might monitor our health [38][28], control
our homes and cities[34], or assist in our factories[32][36][40]. As
the complexity of IoT devices increases, more and more develop-
ers are turning to designs that feature many different applications
running in parallel, emulating more traditional computing archi-
tectures. As these types of embedded systems are becoming more
connected and widely adopted, the primary security challenge is
ensuring the correct functionality of the critical parts of the system.
Security for IoT is a very challenging domain, as IoT devices are
heavily resource-constrained. Researchers and practitioners have
proposed many solutions to address this design space, with Trusted
Execution Environments (TEEs) currently emerging as one of the
most supported solutions[8][37][41].

TEEs are introduced due to increasingly bloated operating sys-
tems and applications (a.k.a. Rich Execution Environment or REE),
which are prone to introducing software bugs due to their com-
plexity. A TEE is an isolated environment where sensitive data
are protected from malicious or compromised components in the
REE, such as the OS or user applications. The TEE protects both
the run-time states and stored assets of security-critical logic by
running it isolated from the REE. Typical TEE use cases are

• the secure storage and usage of cryptographic keys,
• the protection of digital copyrighted information, or
• the safe processing of biometric sensor data.

.
With regards to IoT devices, ARM has introduced TrustZone

technology in Cortex-M devices to implement TEEs[21]. While the
names can be deceptive, it is essential to highlight that TrustZone
technology in Cortex-M (TrustZone-M or TZ-M) is very differ-
ent from the same technology concept implemented for Cortex-A
(TrustZone-A or TZ-A)[12]. In the research communities, typically,
TrustZone refers to TZ-A present in modern smartphones and other
digital devices.

TZ-M consists of hardware extensions present in the processor,
memory, and peripherals, and it enables embedded systems to run
two different software environments, commonly known as the
Normal (Non-secure) World (NW) and the Secure World (SW). The
NW acts as a resource-restricted environment that runs no security-
critical software. In contrast, the security-critical functionality is
located in the SW and has complete control over all device resources.

https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3494107.3522774
https://doi.org/10.1145/3494107.3522774

The SW also represents the TEE and acts as the final arbiter for
determining which device resources are accessible from the NW.
In contrast, the NW can not directly access any SW resources.

The OS and user applications run inside the NW in a typical
scenario. At the same time, the SW only contains a set of security-
critical services exposed to the NW applications in the form of
APIs. This paradigm decouples the secure and non-secure logic,
allowing developers to focus on the security of the secure software
without worrying about the additional code and vulnerabilities
present in the non-secure logic implementations. The introduction
of the NW and SW helps minimize the SW Trusted Computing
Base (TCB) while retaining the more complex non-secure logic
functionalities inside NW. As a result, NW applications can rely on
the SW services to protect their sensitive data. For NW applications
to use SW APIs, the NW and SW need to communicate. However,
they are unaware of each other’s layout and inner logic due to
their isolation. As a result, a “semantic gap” is introduced, where
SW services operate on NW received data without knowing their
NW clients’ explicit permission and capabilities. Attackers can
exploit this lack of information and fool the SW into misusing its
unrestricted capabilities. For example, a malicious NW task might
break the NW’s security mechanisms by making a simple request
to the SW to write data in NWOS code pages, as the SW is unaware
of the existing content of these pages or where the NW OS is.

This paper focuses on solving the semantic gap problem in
TrustZone-M devices. It presents Secure Informer, a novel ap-
proach implemented in the SW that can identify secure ser-
vice calls from the NW. Secure Informer works by monitoring
the side-effects of intrinsic NW behavior and providing a seman-
tic translation to the SW without directly communicating with
the NW or depending on its implementation. As a proof of con-
cept, Secure Informer is implemented on top of the ARM reference
implementation of a secure firmware, namely trustedfirmware-m
(tf-m)[23] and evaluated against several types of tf-m attacks to
demonstrate its effectiveness. While current solutions need changes
to the non-secure software, Secure Informer leverages available hard-
ware (i.e., the memory protection unit or MPU) to handle client
identification in a transparent way to non-secure software. Further,
our solution binds the identification mechanism to the secure ser-
vice call instead of the task context switch mechanism in the NW
scheduler, as currently happens.

Formally, we focus on evaluating the solution based on the fol-
lowing research questions:
RQ1 Does Secure Informer provide TrustZone-enabled Cortex-M

devices an effective authentication mechanism?
RQ2 How does Secure Informer impact the code base?
RQ2.1 Are NW code changes required?
RQ2.2 What SW software stack changes are required for intro-

ducing Secure Informer?
RQ3 Is device performance affected under Secure Informer?
The remainder of this paper is organized as follows:
• Section 2 provides the scientific and technical background;
• Section 3 describes the identification problem in TZ-M de-
vices;

• Section 4 presents the threat model;
• Section 5 discusses our solution, namely Secure Informer ;

• Section 6 introduces the experiments and shows their results;
• Section 7 considers the limitation and the future works;
• Section 8 brings up the related work;
• Section 9 concludes the paper.

2 BACKGROUND
This section describes the core concepts of TEE, TZ-M, MPU, and
the communication between SW and NW.

Different standards and models present TEEs (OMTP [24], Glob-
alPlatform [7], ARM [22]) but they do not define TEE unequivocally.
However, common property in their definitions is that TEE guaran-
tees an isolated environment with the confidentiality of its data[33].

ARM introduced TrustZone technology to support TEE imple-
mentations [2] [4]. The design paradigm relies on a processor-
enforced execution split between different security states. A run-
ning process can execute either in a secure or a non-secure state,
whereas the non-secure software cannot access secure resources di-
rectly. While TZ-A relies on the secure monitor to switch states[27],
TZ-M splits the memory into three different security states: non-
secure, non-secure callable, and secure[42]. Figure 1 shows the
different ways of communicating between the SW and NW in both
TZ-A and TZ-M. A process is in the same state as the code is execut-
ing. A non-secure process can become secure by passing through
non-secure callable code first, while a secure process can always
regress into a non-secure one. This paper focuses primarily on
the secure world (SW) and the non-secure/normal world (NW) in-
teraction, corresponding to the secure and non-secure states. The
non-secure callable state is a unique state that serves as the primary
transition point between the NW and SW.When switching between
NW and SW, the device purges all registers and caches to ensure
the SW is not leaking any information to the NW.

Figure 2 presents the security state changes of processes in
Cortex-M with TrustZone technologies graphically. From a secure
state, the process can use the BXNS or BLXNS instructions to jump
or call a function in a non-secure memory region and, thus, run in
a non-secure state. From a non-secure state, the process can use
the classic BL instruction to jump in the non-secure callable area
only to an SG (Secure Gateway) instruction. Then, it can branch to
a secure memory region running in a secure state. The function
executed in the non-secure callable area is sometimes called the
veneer function. Further, it is essential to recall that state transitions
also happen because of exceptions and interruptions that can be
configured to land on secure or non-secure handler code.

Embedded devices can be either with or without an OS abstrac-
tion. In the latter case, the devices are very limited in the task they
perform, and the software consists of a single control loop and an
interrupt handler to respond to external events. Regarding TEE, we
usually refer to the first category with a logical separation between
the kernel and the user programs. In ARM terminology, they are
also referred to as handler and thread mode. In particular, this paper
considers those devices that also include a lightweight mechanism
to protect memory from unauthorized access essential to implement
the TEE.

The NW typically contains an RTOS that has several programs
running under it. The RTOS executes each non-secure program
in user mode, i.e., a permission restricted execution mode. These

NW SW

SECURE APP

SECURE OS

NON-SECURE
APP

NON-SECURE
OS

SECURE MONITOR

NW SW

SECURE APP

SECURE OS

NON-SECURE
APP

NON-SECURE
OS

TRUSTZONE-A TRUSTZONE-M

Figure 1: Cross-world communication paths in TrustZone Technologies for Cortex-A and Cortex-M

NWSW

SECURE
NON-

SECURE
CALLABLE

NON-
SECURE

BXNS / BLXNS

BL to SGB

Figure 2: Finite State Machine of Processes Life in Cortex-M with TrustZone Technologies

programs are isolated from each other by a Memory Protection Unit
(MPU), which segments the memory and distributes it between
them. During execution, it is the responsibility of the RTOS to
maintain separate environments for each user thread or task. In
order to do so, the RTOS configures the MPU to limit what each
thread can access and provides restrictions on hardware peripherals
and scheduling. However, each executing thread also can access
the SW, which is not aware of this separation because the SW sets
up its MPU configurations and settings to protect its execution.

For Cortex-M devices, the MPU splits the memory into con-
tiguously allocated blocks known as regions[1]. These blocks are
assigned permissions of read, write, execute, and privileged.
Each thread has its own corresponding MPU configuration, as does
the RTOS. Each time there is a context swap, the RTOS alters the
MPU configurations to the new thread configuration. In Cortex-M
devices with TZ-M (a.k.a. ARMv8-M architectures with security
extension), the MPU is banked between SW and NW (i.e., there are
two MPUs).

Inside the SW, the secure firmware provides individual isolated
services to the NW. The size of these services is kept minimal due
to its impact on the SW Trusted Computing Base (TCB). Developer
guidelines advise that the SW contains only security-critical opera-
tions to minimize its attack surface. In contrast, all other operations
should be conducted in NW [17][35]. Each service can be accessed
directly by the NW executing thread. The thread must first call an
NW callable gateway function that passes the request into the SW
to access one of its services. Additionally, the SW halts all other
threaded execution while the system is in a secure state. Secure

services must complete their operations quickly to guarantee RTOS
performance.

3 PROBLEM DESCRIPTION
This section describes the lack of information between the SW and
the NW, the confused deputy problem that derives from it, and the
limitations of current solutions.

As already presented in the previous sections, a TEE is guaran-
teed to be isolated from the REE, allowing communication through
defined interfaces. The SW provides services to the NW threads
that cannot perform such restricted operations (e.g., cryptographic
or secure storage functions). However, the SW has no information
on the NW caller created, managed, and scheduled in an opaque
way by the RTOS. This lack of information leads to the so-called
confused deputy attack [11], where a restricted entity can fool a
more privileged one to perform otherwise unavailable operations.
In our scenario, an NW thread could exploit the SW to break the
isolation between threads established by the RTOS. For example, it
can access a secret key belonging to another NW application.

The identification of NW callers is the primary measure to coun-
teract confused deputy attacks by assigning a unique and secure ID
to each NW thread that interacts with the secure services. Then, the
SW can distinguish different callers and avoid granting threads ac-
cess to other non-secure threads’ data by enforcing access policies in
their services. Although this paper focuses on such an identification
mechanism, it alone cannot solve all the aspects of the confused
deputy problem. Section 8 will present more elaborated attacks

NW SW

TH
RE

AD
 M

O
DE

HA
N

DL
ER

 M
O

DE

NON
SECURE

APP

NON
SECURE

APP
…

OS

SECURE
SERVICE

SECURE MONITOR

TZ DRIVER

1

3

2

Figure 3: Simplified View on a Non Secure Task Calling a
Secure Service in TZ-A based devices (focus on identification)

and counter-measures. The following paragraphs will present how
existing software stacks approached the identification problem.

Modern mobile devices, which incorporate TEE designs backed
by TZ-A, usually implement the identification mechanism through
a piggyback approach. Whenever a non-secure application calls a
function in the SW, the call passes through the non-secure OS that
adds the caller ID to the request before dispatching it to the secure
monitor. The non-secure OS can do so because it is fully aware
of the non-secure caller being the one that manages all the non-
secure threads. In particular, Figure 3 shows the steps involved. First,
the non-secure application 1 requests a kernel module, namely
the TrustZone driver, that retrieves the process ID of the running
thread. Then, the request enhanced with the ID 2 passes through
the secure monitor for authorization, that 3 may dispatch it to the
secure service. Regarding the IoT devices with TZ-M, non-secure
tasks could directly jump in the SW, and they do not need to pass
through the non-secure OS. Thus, such a solution may carry much
overhead if adapted to the TZ-M devices.

Trustedfirmware-m (tf-m) is a reference implementation by ARM
to a TEE empowered by TZ-M. It consists of a secure boot, a core
in charge of isolation and communication between the two worlds
(a.k.a. Secure Partition Manager or SPM), and essential secure ser-
vices (i.e., cryptographic, secure storage, and remote attestation).
Processes in the NW can invoke these secure services through a
standardized set of APIs, namely PSA Functional APIs (see Appen-
dix A). Under the hood, the SPM takes care to dispatch the call and
manage the NW context representation in the SW. Indeed, the SPM
maintains a context during each call from the NW that includes at
least the non-secure client ID (NSID). In tf-m, the RTOS in the NW
must provide the NSID for each connection through the context
APIs (see Appendix B). Otherwise, the same NSID is used for each
connection. In both cases, the context is loaded and saved with the
corresponding non-secure thread when the RTOS kernel performs
scheduling. Figure 4 shows an example. At the moment of thread
creation, 1 the RTOS associates to it an NSDI to communicate to
the SPM through the context API. The SPM, in turn, creates an NW
context representation for that thread. When the RTOS schedules
a thread, 2 the scheduler invokes the SPM that 3 saves the pre-
vious context and loads the new context. Then, 4 the scheduled
thread calls a secure service, while the SW has its NW context and

NW SW

TH
RE

AD
 M

O
DE

HA
N

DL
ER

 M
O

DE

NON
SECURE

TASK

SW API

NON
SECURE

TASK

SW API

…

RTOS

CTX API

VENEERS

NW CTX

SECURE
SERVICE

SECURE PARTITION
MANAGER2

1

3

4 4

Figure 4: Simplified View on a Non Secure Task Calling a Se-
cure Service in Trusted Firmware M (focus on identification)

the NSID. For the sake of simplicity, Figure 4 does not include the
information exchange between the veneers and the SPM necessary
for the request to be dispatched to the correct partition where the
secure service runs.

Currently, the authors are not aware of other available solu-
tions for the identification problem in TZ-M-based software stacks.
However, the tf-m solution has limitations. First, the identification
mechanism implies that developers need to make changes to the
code base of the RTOS, in particular to the scheduler that is a
critical component, to accommodate the calls to the SW at each con-
text switch. Second, these changes are dependant on the RTOS
and the different schedulers that it can include. More importantly,
the whole tf-m solution depends on these modified versions of
the RTOSes. Different communities need to clearly understand the
management protocol of the SW, potentially leading to misinterpre-
tation and severe bugs. Third, the reference implementation puts
the solution overhead on each context switch. To the best of
the authors’ knowledge, there is no study about the workload on
commercial IoT devices powered by MCUs with TZ-M1. However,
the authors believe that not every time a task is scheduled needs to
communicate with the SW, leaving room for optimization.

4 THREAT MODEL
This section defines the threat model under which Secure Informer
was designed.

The focus is on protecting the NW against simple confused
deputy attacks that leverage the information lack in the SW about
NW threads. Such an attack is successful if a non-secure thread can
access secure data that does not possess in the secure world. The
proposed solution operates under the following assumptions:

• the non-secure RTOS is not compromised, and it is protected
against attacks that do not leverage SW vulnerabilities (The
authors believe this is a fair assumption, as once an attacker
can compromise the RTOS, they can mimic any thread or
system state needed to use the secure world);

1Further, since the authors’ interest in TZ-M, the constant monitoring of the end-
market for such IoT devices brought no results. If the reader is aware of any, the
authors would be glad to have this piece of information shared with them. This paper
leaves the workload analysis of these devices for future research.

• the RTOSwill correctly configure security peripherals (e.g., the
MPU) to correctly match the security requirements of the
NW (in particular, isolation of the non-secure tasks);

• the secure services are also not compromised and free of
privilege-escalation vulnerabilities (Attacks that provide di-
rect SW access to adversaries and hardware attacks are be-
yond the scope of this paper);

• any data received from the NW is completely under the
attacker’s control, and the SW must validate it in order to
ensure the confidentiality and integrity of the secure data

• secure data can be stored in the SW by a non-secure thread;
• non-secure applications are isolated from each other in the
NW by the non-secure RTOS;

• to perform the attack, a malicious thread can mimic requests
sent from other non-secure threads (However, they can not
perfectly mimic the system states, e.g., the memory layout,
of other running threads);

A successful attack is where an NW thread can mislead the SW
about its capabilities or permissions. It may either impersonate
another thread or successfully circumvents an SW check. An ex-
ample of a successful attack would be leveraging the SW to access
NW memory that the thread usually would not have permission to
access.

There is no assumption about how long an attack can take or
about the existence of any other defensive mechanisms in the NW
(i.e., mechanisms that would stop the attacker from sending arbi-
trary data to the SW). Additionally, there is no assumption about
other security functionality in the SW. Successfully deceiving the
SW is treated as a full compromise given the vast permissions of
the SW.

This last paragraph will outline how such an attack can be per-
formed in tf-m. As already mentioned, the NW access the secure
service through APIs. Some of these APIs specify a resource ID that
identifies the resource on which the NW thread wants the secure
service to use. For example, it can be a value in secure storage or
a private key. A correct thread owns some of these resources, and
it expects the SW to protect them from other threads. If a running
thread uses the API, the SPM reads the NW context and passes the
request to the secure service together with the NSID. If the non-
secure identification mechanism is not in place, the tf-m assigns
the same NSID to all requests. Then, a malicious thread can guess
the resource ID and make the SW operate on the correct thread’s
resource. Similarly, if the RTOS does not implement the necessary
changes correctly, the identification mechanism can behave errati-
cally, nullifying the efforts of the SW. In both cases, for example,
the malicious thread can use the private key of a correct thread and
impersonate it in network communication.

5 SECURE INFORMER
This section gives an overview of the design of the proposed solu-
tion, namely Secure Informer .

Secure Informer provides a mechanism to assign unique NSIDs
and to bridge the “semantic gap” between the SW and the NW.
Such a solution leverages the MPU to track the context of the NW
directly, but no changes in the NW codebase are required. However,

NW SW

TH
RE

AD
 M

O
DE

HA
N

DL
ER

 M
O

DE

NON
SECURE

TASK

SW API

NON
SECURE

TASK

SW API

…

RTOS

VENEERS

NW CTX

SECURE
SERVICE

SECURE PARTITION
MANAGER

1

3

2 4

MPU MPU

3

Figure 5: View on the Approach Implemented by Secure In-
former to Identify a Non Secure Task Calling a Secure Service

this approach needs to be extended and may touch in the future
such a codebase as explained in Section 7.

Secure Informer depends on the hypothesis that the RTOS im-
plements isolations correctly in the NW. The RTOS processes non-
secure applications in executable threads of instructions. Threads
are isolated from each other and the kernel. The MPU prevents
threads from accessing data, code, and peripherals that the RTOS
has not explicitly granted. Whenever the RTOS needs to create a
user thread, it also creates an MPU configuration that grants access
to a dedicated memory area that it will use as a stack buffer. Thus,
each user thread has a unique MPU configuration that an exter-
nal observer can use to distinguish among them. Also, the RTOS
handler threads have a unique MPU configuration different from
all the user threads. On a context switch, the RTOS loads the MPU
configuration of the thread to be scheduled.

TZ-M splits the processing environment in twowhile duplicating
registers and the MPU. NW and SW can operate independently and
keep their MPU configurations on hold while changing the security
state. The non-secure MPU is configured with the caller thread’s
configuration when the security state is changed to execute the
secure functions in the SW. Secure Informer is implemented in the
SPM and, upon reception of a request from the NW, computes the
NSID by reading the non-secure MPU state.

Figure 5 shows Secure Informer graphically. At context switch,
1 the RTOS changes the MPU state loading the configuration
associated with the scheduled task. The non-secure task can then
2 call a secure service using the SW API, that triggers the SPM to
3 read the non-secure MPU state, compute the NSID, and load the
NW context. Finally, the secure service 4 receives the request and
serves the non-secure task.

We implemented Secure Informer’s mechanism in tf-m2 through
a function named set_client_id. Algorithm 1 presents the pseu-
docode of Secure Informer’s implementation. Tf-m includes two
different models for the communication between the SW and the
NW: the IPC model and the library model. In the IPC model, the in-
teractions are implemented through interrupts and set_client_id
is called from the SVC_Handler_IPC function3. In the library model,
the interactions are implemented through simple function calls and

2version 1.3, commit id 9d93424a12b8cc2ba56518f76edadeaabc29e143
3secure_fw/spm/cmsis_psa/tfm_core_svcalls_ipc.c

Algorithm 1 set_client_id

Global Variable: map, client_id
1: ns_config = read_ns_mpu()
2: for each region in ns_config do
3: if region.enabled then
4: str += region.RBAR
5: end if
6: end for
7: client_mpu_hash = hash(str)
8: if map.has(client_mpu_hash) then
9: client_id = map.get(client_mpu_hash)
10: else
11: client_id = get_next_ns_client_id()
12: map.put(client_mpu_hash, client_id)
13: end if

the set_client_id is called from the tfm_core_partition_request
function4. In both cases, set_client_id is defined in tfm_nspm.h.
The function makes use of two global variables: map and client_id.
While client_id is already used by the SPM as the NSID, Secure
Informer introduces map to store themapping between theMPU con-
figurations and the NSIDs. At the very beginning, set_client_id
reads the non-secure MPU configuration, i.e., the MPU configu-
ration of the non-secure caller (line 1). Then it concatenates the
base addresses of the enabled regions (lines 2-6). This byte array
is unique to the client since it contains at least a read/write (R/W)
region for its stack that no other clients can access in the NW. The
function computes the hash of this array to retrieve the client id
assigned to it (lines 7-9). If none is assigned, it creates a new NSID
and puts it on the map for later usage (lines 10-13).

The way Secure Informer computes the byte array in lines 2-6
can be optimized by considering only the MPU regions with the
R/W attribute. Further, some systems may have different threads
executing the same application. It may be necessary to uniquely
identify the application as a group of threads. The MPU configures
Read-Only (R/O) regions (i.e., code) that different threads can share
from the same application to implement code isolation. Thus, an
implementation would be to consider only R/O regions in line 3.
Similarly, there can be cases where there is a need for a thread NSID
and an application/group NSID. In this case, both of the previous
cases can be implemented side by side. For the rest of this paper,
we only consider the thread NSID as outlined in Algorithm 1.

The main challenge of cross-world identification is that the SW
should know the context of the NW without being in regular com-
munication with it. We already presented other approaches, such
as the one implemented by tf-m (i.e., through context management
APIs) or the mechanism used by TZ-A based devices (i.e., piggy-
back). Each carries its potential benefits and drawbacks, which we
have summarized in Table 1. The choice between Secure Informer
and the tf-m implementation comes down to the workload of the
system. Systems with a large number of context switches and few
calls into the SW will have better performance using Secure In-
former . On the contrary, systems with few context switches and
many calls will perform better with tf-m solution. Given that calls to

4secure_fw/spm/cmsis_func/tfm_secure_api.c

the SW tend to be rarer than context switches, the authors believe
that Secure Informer is a more appropriate and relevant solution
for the majority of systems. Analyzing the specific workload of
future commercialized devices with TZ-M will allow the developer
to decide which is best for their system, which should be considered
for future work.

6 EVALUATION
This section answer the research question presented in the intro-
duction (Section 1) through the evaluation of Secure Informer .

6.1 Testing environment
The experiments run on qemu (v5.2.0) emulating mps2-an521. The
baseline configuration consists of an unmodified trustedfirmware-m
(version 1.3) running on the secure side and zephyr OS[31] (ver-
sion 2.6) running on the non-secure side. Zephyr OS runs appli-
cation threads at a reduced privilege level (user mode). The au-
thors chose to leverage qemu over the physical hardware to benefit
from virtualization’s better tracing and analysis functionality. The
enhanced configuration adds the Secure Informer changes in the
trustedfirmware-m code.

The authors used three test suites. An ad-hoc test suite imple-
ments basic attack scenarios where a malicious thread tries and
impersonates a correct thread to access otherwise private resources
in the SW. The ARM PSA test suite checks whether the function-
alities offered by the PSA APIs are delivered correctly. The tf-m
regression test suite verifies that the code changes in the firmware
do not impact the existing functionality.

6.2 Experiments
The authors conducted two series of experiments to assess the
effectiveness and the computing overhead of Secure Informer .

In the first set of experiments, the objective is to assess whether
Secure Informer can provide NSID correctly without disrupting the
firmware functionalities.

In the second set of experiments, the objective is to compare the
tf-m vanilla version (without changes) with the version enhanced
with Secure Informer .

6.2.1 Effectiveness Experiments. First, the authors run the ARM
PSA and the tf-m regression test suites on the modified version
of tf-m with Secure Informer . The tests should pass without any
error to demonstrate that Secure Informer does not interfere with
the functionalities of the secure framework.

Then, the authors designed an ad-hoc test suite to validate the
solution in different usage scenarios of the two primary secure ser-
vices already implemented in tf-m, namely the secure storage and
cryptographic services. The test suite consists of a minimal environ-
ment with several different context-based attacks. For example, let
A and B be two application threads running in their own space in
zephyr OS. These threads are spawned by the RTOS and maintain a
similar MPU configuration throughout the system life-cycle. Both
A and B are isolated in the NW; both can access the SW but do not
have permission to affect each other’s SW resources. The goal is to
ascertain security on two main tasks: protecting stored values and
protecting key usage.

tfm_nspm.h

Table 1: Advantages and Disadvantages for Identification Mechanisms in Systems with TrustZone Technologies

Approach Advantages Disadvantages

piggy-back (TZ-A) straighforward solution to implement changes to NW
SW has to trust completely the request from the NW

context management API available reference implementation to implement changes to NW
call to the SW at each NW context switch

Secure Informer
no changes to NW (ready-to-use) overhead upon requests to the SWlighter NW thread context switch

Table 2: Attack Scenarios in the Ad-hoc Test Suite

ID Secure Service Application A Application B
1

Secure Storage write x in SW

read x
2 read info of x
3 overwrite x
4 delete x
5

Crypto create k in SW

read k
6 read info of k
7 create a copy of k
8 encrypt data with k
9 delete k

For protecting stored values, the goal is to ensure the confiden-
tiality of secure memory, i.e., to guarantee that no other actors may
tamper with secured values. The goal is to analyze the ability to
read, write, delete, or utilize a secured value where the isolation
forbids such actions. Application A initially stores value X in the
SW thanks to the secure storage service. Application B attempts to
act on that value. Since they are isolated in the NW, B should not
be able to interact with value X as it belongs to application A.

For the security of key stores, both A and B use the same key
store but should not have access to each other’s keys. Application
A generates a key k through the cryptographic service in the SW.
Application B tries and invokes different operations (e.g., sign a
message). Once again, if they are properly isolated in the SW, the
key k should not be accessible to application B.

Table 2 presents the ad-hoc test suite. In all cases, a test succeeds
if application B is forbidden to interact with value X or key k.
These experiments aim not to evaluate the standard protections
available in the non-secure RTOS but to evaluate how attackers
can analyze the lack of shared context between the SW and NW
to circumvent security protections. To validate this test suite, the
authors run it against tf-m without any identification mechanism
(same NSID for all the non-secure callers). All the tests failed as
expected, confirming the validity of the attacks.

6.2.2 Overhead Experiments. The overhead experiments consisted
of the executions of the ARM PSA and the regression test suites on
tf-m with and without the changes of Secure Informer , intending to
compute its overhead. While Qemu does not accurately trace the
number of cycles an experiment needs to complete, it can deter-
ministically generate instruction traces for the tests. In this way,
we were able to measure the number of cycles by leveraging the
instruction traces of Qemu.

6.3 Results
In the effectiveness experiments, Secure Informer passed the three
test suites. This result showed that Secure Informer is able to effec-
tively provide the SW client identification of non-secure callers (cfr.
RQ1).

It is important to note that no change was made to the kernel of
Zephyr OS to make Secure Informer . Thus, the author can confirm
that an identification mechanism such as Secure Informer is effective
without requiring any code modification to the NW (cfr. RQ2.1).

Further, the implementation of Secure Informer , for both IPC
and library mode of tf-m, touched only five source files in the SPM
codebase and one source file in the platform utilities. It consists of
only 464 lines of code. It increases the tf-m binary size by 52 bytes
(<0.01%) (cfr. RQ2.2).

During the overhead experiments, adding Secure Informer in-
curred 3.5% and 2.9% overhead while running the ARM PSA and
regression test suites, respectively. Table 3 presents the results of
these last experiments. Thus, the authors state that Secure Informer
slightly affects the performance of the device (cfr. RQ3).

7 LIMITATIONS
The presented experiments indicate Secure Informer is effective in
providing an identification mechanism without involving the NW,
resulting in security against simple confused deputy attacks with-
out significantly impacting system performance. However, some
limitations should be addressed in future work.

A first limitation is the persistence of NSID through device re-
boots or updates. While some RTOS systems hard-code the memory
areas to assign threads as a stack, some randomly assign them. Even
if this latter case is rare in lightweight devices, memory allocation
for processes is not fixed and not known a priori. The same problem
can appear during an update process of the device firmware. The
application threads can have a different MPU configuration after
a reboot or an update, thus a different NSID. Keeping the same
NSID over reboot is essential for those applications that need to
store and use persistent data in the SW. A potential solution is to
have informed reboots and updates, i.e., adding more logic to the
SW. The SPM could compute the hash of the code area (i.e., R/O
region extracted by the MPU configuration) the first time it saw
an NSID. It can then compare this hash value with other hashes
previously-stored and mapped to an NSID. The SPM can always
present the same NSID to the secure services from the same client
even after a reboot. A similar approach can be used to address
the reboots, where the secure update service is taking care of the
transformation of the NSID. However, the update process should

Table 3: Cycles Measurements for the Overhead Experiments

Test Suite Vanilla tf-m tf-m with Secure Informer Overhead
ARM PSA 91730 cycles 95011 cycles 3.5%

Regression Test 381725 cycles 392857 cycles 2.9%

be enhanced to include these maps between the code hash of the
previous and subsequent versions of the applications.

An open challenge is that some systems, especially those not
restrained with more complex memory management, constantly
create and destroy applications, including their executing threads.
Two different applications could have the same memory allocation,
with the same MPU configuration and NSID. However, the authors
do not believe that this scenario will be used in IoT devices imple-
mented with the Cortex-M family, addressing more manageable
scenarios.

8 RELATEDWORK
This section presents the work related to the presented solution.
It is essential to highlight that the state-of-the-art regards mainly
the devices based on TZ-A (TrustZone for Cortex-A family). TZ-
M is still in its early stage of deployment, and to the best of the
authors’ knowledge, there is no published research on confused
deputy problems for such an architecture.

Jiang et al.[13] was the first to publish a research paper about
the identification problem of non-secure applications in TZ-A. The
main objective is to authenticate the caller’s identity (self-provided
by the caller) so that the NW does not leak private information to
malicious non-secure callers. They propose a novel identification
schema to detect the legitimacy of non-secure callers who initiate
a secure service request. The approach is implemented in the NW
kernel. Specifically, the TrustZone driver is used as a bridge between
the user application and the secure monitor. Figure 6 presents it
graphically. A non-secure application 1 initially invokes a secure
service through the TrustZone driver, which 2 computes the hash
of its code segment (R/O memory region) and stores it. As already
highlighted in this paper, the hash of the code area is unique to
each application. Then, the driver 3 sends the request to the secure
service. When a malicious non-secure application 4 sends another
request using the correct application ID, the driver detects the
attack by comparing its code hash with the stored one and denies
the request.

Almost at the same time, Zhao et al.[43] faced the same problem
and proposed a different identity authenticationmechanism. Similar
to the previously presented approach, the authors proposed to
move the hash comparison function into an SW service, as shown
in Figure 7. Whenever an application requests a secure service,
the identity-obtaining module 1 computes the hash of the code
segment and uses it as an ID. The TZ driver 2 receives the request
with the caller’s ID, and it 3 sends it to the secure monitor. The
secure monitor 4 invokes an identity authentication module that
checks the ID (i.e., hash). If the authentication succeeds, the request
5 is dispatched to the secure service.
Both solutions stem from the necessity to authenticate the iden-

tity of the non-secure callers that in TZ-A, solutions are usually
provided by the NW OS without any guarantee. Several attack

NW SW

TH
RE

AD
 M

O
DE

HA
N

DL
ER

 M
O

DE

NON
SECURE

APP

NON
SECURE

APP
…

OS

SECURE
SERVICE

SECURE MONITOR

TZ DRIVER

1

3

3

HASHES 2

4

Figure 6: Simplified view on the Identity Authentication
Mechanism proposed by Jiang et al.[13]

NW SW
TH

RE
AD

 M
O

DE
HA

N
DL

ER
 M

O
DE

NON
SECURE

APP

IDENTITY
OBTAINING
MODULE

OS

SECURE
SERVICE

SECURE MONITOR

TZ DRIVER

3

5

HASHES

IDENTITY
AUTHENTICATION

MODULE

4

1

2

Figure 7: Simplified view on the Identity Authentication
Mechanism proposed by Zhao et al.[43]

to TZ-A based implementations of TEE were reported during the
years[5][14][15][16]. All these exploits have in common the first
step of fooling the TZ driver for a malicious application to com-
municate with the SW. In TZ-M, such a driver does not exist, and
every NW thread can initiate a request to the SW, making the cor-
rect implementation of the identification mechanism of paramount
importance.

A more complex confused deputy attack is presented by Machiry
et al.[26]. In this case, the attacker’s target is not the private values
of clients stored in the SW but their isolated memory in the NW.
The boomerang attack alters these locations exploiting the SW
without tampering with either it or the NW. Whenever an NW
application passes memory pointers to a secure service, the secure
monitor sanitizes these pointers to avoid requesting a secure service
to change another application data. However, this check is faulty
because it does not consider “inner pointers”, i.e., pointers hidden
deep in data structures passed as parameters. This attack is mainly
possible because SW developers paid little attention to creating

complex API for their custom services by enlarging excessively
the TCB that should be kept minimal and simple. TZ-M based
software can have the same design flaws. The authors analyzed all
the exposed APIs in the reference implementation tf-m, without
finding any complex parameter that may allow “inner pointers”.
Once TZ-M is widely used by manufacturers, future research may
look for such vulnerability in custom implementations of the SW.

Secure Informer may be correctly associated to Virtual Machine
Introspection (VMI)[39] mechanisms. VMI aims to fill the lack of
higher-level knowledge of Guest OS within the Virtual Machine
Monitor (VMM). Indeed, TrustZone isolation capabilities have also
been exploited as a virtualization technology[6][29][30][25]. In-
deed, there is also a VMI library for TZ-A, namely ITZ[9][10]. The
main challenge addressed by VMI mechanisms is the translation of
the virtual addresses. However, Cortex-M devices make no use of
virtual addresses, and Secure Informer does not focus on memory
content but on the MPU, a duplicated hardware resource of the
processor that allows gathering information about the activity of
the NW.

ACKNOWLEDGMENTS
This work is an output of the project STARTS (SecuriTy Assessment
of tRusTzone-m based Software), supported by the Luxembourg
National Research Fund (FNR) in the framework of the Junior CORE
programme under grant number 13624693.

REFERENCES
[1] 2010. ARMv7-M Architecture Reference Manual. Vol. 3. ARM Limited. https:

//developer.arm.com/documentation/ddi0403/latest
[2] Tiago Alves. 2004. Trustzone: Integrated hardware and software security. White

paper (2004).
[3] ARM. 2008. ARM Introduces Software Interface Standard for Cortex Processor-Based

Microcontroller. http://www.arm.com/about/newsroom/23722.php
[4] A ARM. 2009. Security technology building a secure system using trustzone

technology (white paper). ARM Limited (2009).
[5] Marcel Busch, Johannes Westphal, and Tilo Mueller. 2020. Unearthing the Trust-

edCore: A Critical Review on Huawei’s Trusted Execution Environment. In 14th
{USENIX} Workshop on Offensive Technologies ({WOOT} 20).

[6] Torsten Frenzel, Adam Lackorzynski, Alexander Warg, and Hermann Härtig.
2010. Arm trustzone as a virtualization technique in embedded systems. In
Proceedings of Twelfth Real-Time Linux Workshop, Nairobi, Kenya. 29–42.

[7] Inc. GlobalPlatform. 2018. TEE System Architecture. Retrieved December 1,
2021 from https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_
SystemArch_v1.2_PublicRelease.pdf

[8] Christian Göttel, Pascal Felber, and Valerio Schiavoni. 2019. Developing secure
services for IoT with OP-TEE: a first look at performance and usability. In IFIP
International Conference on Distributed Applications and Interoperable Systems.
Springer, 170–178.

[9] Miguel Guerra, Miguel Correia, Benjamin Taubmann, and Hans P Reiser. 2017.
ITZ: an introspection library for ARM TrustZone. In Proceedings of INFORUM.

[10] Miguel Guerra, Benjamin Taubmann, Hans P Reiser, Sileshi Yalew, and Miguel
Correia. 2018. Introspection for ARM TrustZone with the ITZ Library. In 2018
IEEE International Conference on Software Quality, Reliability and Security (QRS).
IEEE, 123–134.

[11] Norm Hardy. 1988. The Confused Deputy: (or why capabilities might have been
invented). ACM SIGOPS Operating Systems Review 22, 4 (1988), 36–38.

[12] Antonio Ken Iannillo and Radu State. 2019. A proposal for security assessment
of trustzone-m based software. In 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW). IEEE, 126–127.

[13] Hang Jiang, Rui Chang, Lu Ren, Weiyu Dong, Liehui Jiang, and Shuiqiao Yang.
2017. An Effective Authentication for Client Application Using ARM TrustZone.
In International Conference on Information Security Practice and Experience.

[14] Daniel Komaromy. 2018. Unbox Your Phone. Retrieved December 1, 2021 from
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c

[15] laginimaineb. 2016. Extracting Qualcomm’s KeyMaster Keys - Breaking An-
droid Full Disk Encryption. Retrieved December 1, 2021 from https://bits-
please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html

[16] laginimaineb. 2016. TrustZone Kernel Privilege Escalation (CVE-2016-2431).
Retrieved December 1, 2021 from https://bits-please.blogspot.com/2016/06/
trustzone-kernel-privilege-escalation.html

[17] Wenhao Li, Yubin Xia, and Haibo Chen. 2019. Research on arm trustzone. Get-
Mobile: Mobile Computing and Communications 22, 3 (2019), 17–22.

[18] Arm Limited. [n. d.]. PSA Certified. Retrieved December 1, 2021 from https:
//www.psacertified.org/

[19] Arm Limited. [n. d.]. PSA Cryptography API 1.0. Retrieved December 1, 2021
from https://documentation-service.arm.com/static/5fae7799ca04df4095c1cab0

[20] Arm Limited. [n. d.]. PSA Storage API 1.0. Retrieved December 1, 2021
from https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/
Implement/IHI0087-PSA_Storage_API-1.0.0.pdf

[21] Arm Limited. [n. d.]. TrustZone for Cortex-M. Retrieved December 1, 2021
from https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-
cortex-m

[22] Arm Limited. 2021. Platform Security Model. Retrieved December 1, 2021 from
https://developer.arm.com/documentation/den0128/0100/

[23] Linaro Limited. [n. d.]. Trusted Firmware M (TF-M). Retrieved December 1, 2021
from https://www.trustedfirmware.org/projects/tf-m/

[24] OMTP Limited. 2009. Advanced Trusted Environment: OMTP TR1. Re-
trieved December 1, 2021 from http://www.omtp.org/OMTP_Advanced_Trusted_
Environment_OMTP_TR1_v1_1.pdf

[25] Pierre Lucas, Kevin Chappuis, Michele Paolino, Nicolas Dagieu, and Daniel Raho.
2017. Vosysmonitor, a low latency monitor layer for mixed-criticality systems
on armv8-a. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[26] AravindMachiry, Eric Gustafson, Chad Spensky, Christopher Salls, Nick Stephens,
Ruoyu Wang, Antonio Bianchi, Yung Ryn Choe, Christopher Kruegel, and Gio-
vanni Vigna. 2017. BOOMERANG: Exploiting the Semantic Gap in Trusted
Execution Environments.. In NDSS.

[27] Bernard Ngabonziza, Daniel Martin, Anna Bailey, Haehyun Cho, and Sarah
Martin. 2016. Trustzone explained: Architectural features and use cases. In 2016
IEEE 2nd International Conference on Collaboration and Internet Computing (CIC).
IEEE, 445–451.

[28] Adeniyi Onasanya andMaher Elshakankiri. 2021. Smart integrated IoT healthcare
system for cancer care. Wireless Networks 27, 6 (2021), 4297–4312.

[29] Sandro Pinto, Daniel Oliveira, Jorge Pereira, Nuno Cardoso, Mongkol Ekpa-
nyapong, Jorge Cabral, and Adriano Tavares. 2014. Towards a lightweight em-
bedded virtualization architecture exploiting arm trustzone. In Proceedings of the
2014 IEEE Emerging Technology and Factory Automation (ETFA). IEEE, 1–4.

[30] Sandro Pinto, Jorge Pereira, Tiago Gomes, Mongkol Ekpanyapong, and Adriano
Tavares. 2016. Towards a TrustZone-assisted hypervisor for real-time embedded
systems. IEEE computer architecture letters 16, 2 (2016), 158–161.

[31] Zephyr Project. 2021. Zephyr Project Documentation. Online. https://docs.
zephyrproject.org/latest

[32] Juan E Rubio, Rodrigo Roman, and Javier Lopez. 2020. Integration of a threat
traceability solution in the industrial internet of things. IEEE Transactions on
Industrial Informatics 16, 10 (2020), 6575–6583.

[33] Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah. 2015.
Trusted execution environment: what it is, and what it is not. In 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1. IEEE, 57–64.

[34] Tohid Shekari, Celine Irvene, Alvaro A Cardenas, and Raheem Beyah. 2021.
MaMIoT: Manipulation of Energy Market Leveraging High Wattage IoT Botnets.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security. 1338–1356.

[35] Darius Suciu, Stephen McLaughlin, Laurent Simon, and Radu Sion. 2020. Hori-
zontal Privilege Escalation in Trusted Applications. In 29th {USENIX} Security
Symposium ({USENIX} Security 20).

[36] Muhammad Azmi Umer, Chuadhry Mujeeb Ahmed, Muhammad Taha Jilani, and
Aditya P Mathur. 2021. Attack rules: an adversarial approach to generate attacks
for Industrial Control Systems using machine learning. In Proceedings of the 2th
Workshop on CPS&IoT Security and Privacy. 35–40.

[37] Dalton Cézane Gomes Valadares, Newton Carlos Will, Marco Aurélio Spohn,
Danilo Freire de Souza Santos, Angelo Perkusich, and Kyller Costa Gorgonio.
2021. Trusted Execution Environments for Cloud/Fog-based Internet of Things
Applications.. In CLOSER. 111–121.

[38] Min Woo Woo, JongWhi Lee, and KeeHyun Park. 2018. A reliable IoT system
for personal healthcare devices. Future Generation Computer Systems 78 (2018),
626–640.

[39] Haiquan Xiong, Zhiyong Liu, Weizhi Xu, and Shuai Jiao. 2012. Libvmi: a library
for bridging the semantic gap between guest OS and VMM. In 2012 IEEE 12th
International Conference on Computer and Information Technology. IEEE, 549–556.

[40] Joy Qiping Yang, Siyuan Zhou, Duc Van Le, Daren Ho, and Rui Tan. 2021. Im-
proving Quality Control with Industrial AIoT at HP Factories: Experiences and
Learned Lessons. In 2021 18th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON). IEEE, 1–9.

[41] Quanqi Ye, Heng Chuan Tan, Daisuke Mashima, Binbin Chen, and Zbigniew
Kalbarczyk. 2021. Position Paper: On Using Trusted Execution Environment to

https://developer.arm.com/documentation/ddi0403/latest
https://developer.arm.com/documentation/ddi0403/latest
http://www.arm.com/about/newsroom/23722.php
https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_SystemArch_v1.2_PublicRelease.pdf
https://globalplatform.org/wp-content/uploads/2017/01/GPD_TEE_SystemArch_v1.2_PublicRelease.pdf
https://medium.com/taszksec/unbox-your-phone-part-i-331bbf44c30c
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
https://bits-please.blogspot.com/2016/06/extracting-qualcomms-keymaster-keys.html
https://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://bits-please.blogspot.com/2016/06/trustzone-kernel-privilege-escalation.html
https://www.psacertified.org/
https://www.psacertified.org/
https://documentation-service.arm.com/static/5fae7799ca04df4095c1cab0
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0087-PSA_Storage_API-1.0.0.pdf
https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0087-PSA_Storage_API-1.0.0.pdf
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/ip-products/security-ip/trustzone/trustzone-for-cortex-m
https://developer.arm.com/documentation/den0128/0100/
https://www.trustedfirmware.org/projects/tf-m/
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
https://docs.zephyrproject.org/latest
https://docs.zephyrproject.org/latest

Secure COTS Devices for Accessing Industrial Control Systems. (2021).
[42] Joseph Yiu. 2015. ARMv8-M architecture technical overview. ARM white paper

(2015).
[43] Bo Zhao, Yu Xiao, Yuqing Huang, and Xiaoyu Cui. 2017. A private user data

protectionmechanism in TrustZone architecture based on identity authentication.
Tsinghua Science and Technology 22, 2 (2017), 218–225.

A PSA FUNCTIONAL APIS
ARM created Platform Security Architecture (PSA) specification
as a standard for IoT security supported by a certification scheme,
namely PSA certified[18]. PSA certified is guided by a consortium
that includes ARM, Brightsight, CAICT, Prove&Run, Riscure, and
UL. It consists of a four-stage framework that IoT designers can use
to guarantee security in their products. Among other resources, it
freely provides an interface specification to secure services, such as
cryptography, secure storage, and attestation. This paper considers
the first two services since they manage resources in the SW for
non-secure threads.

The PSA storage API [20] provides a key/value storage interface
for use with device-protected storage. It includes APIs for both
the internal and external protected storage. We present only the
protected storage API for simplicity since the internal storage API
has identical parameters. The PSA protected storage API consists
of 5 functions:

• psa_ps_set(uid, lenght, p_data, create_flags cre-
ates or modifies a key/value pair with uid as a key. The
create_flags set the properties of the data (e.g.,write once);

• psa_ps_get(uid, offset, size, p_data, p_length)
retrieves the data associatedwith the provided uid, including
its length;

• psa_ps_get_info(uid, p_info) retrieves the metadata of
the data associated with the provided uid (i.e., allocated
capacity, size, and properties);

• psa_ps_remove(uid) removes the key/value pair from the
storage;

• psa_ps_create(uid, capacity, create_flags) reserves
storage for the associated uid;

Similarly, the PSA cryptography API [19] defines more complex
interfaces for the management of keys and both symmetric and
asymmetric cryptography. The functions tomanage a cryptographic
key are:

• psa_generate_key(attributes, uid) creates a new key
with the provided attributes (e.g., type, size) in the SW re-
turning its identifier to use in other functions;

• psa_export_key(uid, data, size, length reads a key
identified by uid from the SW;

• psa_get_key_attributes(uid, attributes) retrieves the
attributed of the key identified by uid;

• psa_copy_key(source_uid, attributes, target_uid
makes a copy of the key identified by source_uid returning
a new key identified by target_uid;

• psa_destroy_key(uid) delete the key identified by uid.
All the other functions that need a key to perform a cryptographic
operation includes the uid of a key as first parameter.

In both services, the standard defines uid as a 64-bit value. This
ID consists of two parts: the first half is the identifier of the request-
ing entity, while the second half is the resource identifier specified

by the caller. The SPM retrieves the caller id and concatenates
the two values. This approach allows to easily manage isolation
between the identifier namespaces of the services’ various clients.

B CONTEXT MANAGEMENT APIS
ARM developed and open-sourced the Common Microcontroller
Software Interface Standard (CMSIS) to help the industry in stan-
dardization [3]. CMSIS is a set of tools, APIs, frameworks, and
workflows that focuses on software re-use and support developers
to bring new applications to market quicker. In particular, CMSIS-
Core(M) creates a vendor-independent hardware abstraction layer
for Cortex-M processor-based devices and supports the TrustZone-
M extension. It defines APIs to consistently manage thread contexts
when switching between the SW and NW. The OS in the NW noti-
fies the SW each time there is a thread context switch to manage
the secure stack space and identify the non-secure caller. This API
requires that the SWmust implement a secure context management
system that is accessed through five secure functions:

• TZ_InitContextSystem_S: prepares the context manage-
ment system;

• TZ_AllocModuleContext_S: informs the SW that a new
thread has been created in the NW that will eventually make
a secure call;

• TZ_FreeModuleContext_S: frees the secure resources allo-
cated for a thread that has been terminated in the NW;

• TZ_LoadContext_S: notifies the SW of the start of the exe-
cution of a specific thread in the NW;

• TZ_StoreContext_S: notifies the SW of the end of the exe-
cution of a specific thread in the NW;

By modifying the scheduler in the NW, whenever the NW makes a
call to a secure function, the SW knows which non-secure thread
is actually the caller and can differentiate its policy accordingly.
However, this mechanism requires changes to the NW code and
introduces two calls to the SW for each context switch. These calls
are required even if the running non-secure thread will never call
the SW before its next context switch.

	Abstract
	1 Introduction
	2 Background
	3 Problem Description
	4 Threat Model
	5 Secure Informer
	6 Evaluation
	6.1 Testing environment
	6.2 Experiments
	6.3 Results

	7 Limitations
	8 Related Work
	Acknowledgments
	References
	A PSA Functional APIs
	B Context Management APIs

