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ABSTRACT
The Domain Name System (DNS), a fundamental protocol that con-
trols how users interact with the Internet, inadequately provides
protection for user privacy. Recently, there have been advancements
in the field of DNS privacy and security in the form of the DNS over
TLS (DoT) and DNS over HTTPS (DoH) protocols. The advent of
these protocols and recent advancements in large-scale data process-
ing have drastically altered the threat model for DNS privacy. Users
can no longer rely on traditional methods, and must instead take
active steps to ensure their privacy. In this paper, we demonstrate
how the extended Berkeley Packet Filter (eBPF) can assist users
in maintaining their privacy by leveraging eBPF to provide privacy
across standard DNS, DoH, and DoT communications. Further, we
develop a method that allows users to enforce application-specific
DNS servers. Our method provides users with control over their
DNS network traffic and privacy without requiring changes to their
applications while adding low overhead.
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1 INTRODUCTION
Motivation Since the publication of RFC 7626 [5] in August 2015,
Domain Name System (DNS) privacy has been a growing area
of research in the community. DNS is a fundamental protocol on
the Internet, and as all traffic originates as a DNS request, users
reasonably expect that these queries remain private between the
stub resolver and the DNS nameserver (even though these queries
are normally sent in cleartext). DNS privacy is a fundamental tenet
of browser privacy as all traffic originates as a DNS request and
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anything embarrassing or potentially compromising from a user is
visible to the browser, and vulnerable at the DNS layer. Attackers
who successfully intercept DNS communication gain unique insights
into user behavior. Despite research in areas of resolver privacy
and encrypted traffic [11][19][25][38][5], most current solutions in
protecting DNS traffic are at the provider level, outside the control
of users. This allows providers to access any information from a
DNS request, potentially decreasing the privacy of a user. RFC
7626 recommends that one of the best options for privacy-conscious
users is to use different DNS providers for different applications(e.g.
Firefox, Skype), rendering them more difficult to track. The current
structure of most user-based systems makes using multiple DNS
servers difficult, prompting the need for a more efficient way to
utilize this privacy method.

Problem statement Currently, most applications for DNS privacy
are designed to protect against third party eavesdroppers, but there
is not a similar system for users to control their privacy against
pervasive monitoring at the resolver level. Privacy conscious users
who wish to avoid being fingerprinted by their DNS provider must
manually change their system resolver, a very coarse solution. In
this paper, our goal is to propose an alternative system to route user
DNS queries to a variety of different providers. This addresses the
current need for an effective method for privacy-conscious users to
control their DNS traffic and increase privacy. This system should
also be compatible with other advancements in DNS user privacy
such as encrypting user data over HTTPS or TLS.

Objective Our goal is to provide users with more control over
their privacy by allowing them to use application-specific DNS
filtering or monitoring for any from of DNS that cannot be directly
filtered. Additionally, we aim to ensure that this interface works
in conjunction with other alternative DNS systems such as DoH
(DNS over HTTPS) and DoT (DNS over TLS), providing a helpful
addition to ensure a user’s privacy. We aim to provide users with far
greater control of their DNS queries.

Solution The extended Berkeley Packet Filter (eBPF) is a new
technology for kernel-space monitoring and network traffic shaping.
In this paper, we demonstrate how eBPF can be leveraged to provide
better user privacy. We show how eBPF can monitor DoH systems,
allowing users to make informed decisions about their privacy even
though it cannot directly interact with the underlying communica-
tions. We then demonstrate the privacy gains of such a system and
measure the performance overheads imposed.
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The rest of the paper is organized as follows. Section 2 covers the
necessary background for this research. Section 4 describes the work
we did with eBPF and DNS privacy methods. Section 5 describes
our experimental analysis of our system. Section 6 contains our
conclusions and thoughts on future work.

2 BACKGROUND AND RELATED WORK
The Domain Name System (DNS) is one of the most fundamental
protocols on the Internet. It maps human-readable domain names to
corresponding IP addresses of Internet endpoints. DNS presents an
essential component of our Internet infrastructure.

2.1 Privacy assessment of DNS
There are fundamental concerns about privacy and security in DNS.
Users are worried about privacy in DNS-based name resolutions.
The critical path occurs between the client and the resolver (server),
where several entities such as the Internet service provider (ISP) and
domain name server might eavesdrop on communications. While
new technologies address the problem of third-party eavesdropping,
they do so by instead giving more information to the DNS server op-
erator, thereby requiring privacy-conscious users to regularly change
their DNS server to preserve anonymity.

Recently, various proposals have been standardized by the Inter-
net Engineering Task Force (IETF) as Request For Comments (RFC)
documents to encrypt the DNS communication between clients and
resolvers. In RFC7858 [38], the authors described the use of Trans-
port Layer Security (TLS) to provide privacy for DNS, and in a
followup [9], the authors demonstrated how to implement RFC7858
functionality in QUIC to provide transport privacy for DNS. In
RFC8484 [19], the authors proposed DNS Queries over HTTPS. In
RFC8094 [25], the authors proposed the use of Datagram Transport
Layer Security (DTLS) for DNS. The common contribution of all
proposals is to encrypt and authenticate the DNS traffic to guaran-
tee both client-to-resolver integrity and security and confidentiality
across a variety of different transport protocols. Before that, there
were several other implementations such as DNSCrypt[11] a proto-
col that authenticates communications between a DNS client and a
DNS resolver.

In this paper, we focus on two predominantly deployed standards:
DNS over TLS (RFC7858) and DNS over HTTPS (RFC848).

2.2 DNS over TLS (DoT)
DNS over TLS (DoT) is specified in RFC 7858 [38]. It takes the
existing DNS over TCP protocol and wraps it into a TLS layer. The
goal of DoT is to increase user privacy and security by preventing
the manipulation of DNS data via Man-in-the-Middle attacks. DoT is
well-suited for a system-wide DNS service such as the stub resolvers
of operating systems.

2.3 DNS over HTTPS (DoH)
DNS over HTTPS (DoH) is a more recent proposal from October
2018 and is specified in RFC 8484 [19]. It contains two different
approaches, based on the HTTP GET and POST methods. The GET
method uses a URI with a parameter that represents a base64 encod-
ing of a DNS message in DNS wire format and should, therefore,
be avoided for privacy-conscious users. In the POST method, the

Figure 1: All available BPF tracing and performance tools. Ar-
rows signify the values that can be traced in each Linux block
with eBPF. This figure is provided by the developers of bcc, a
compiler for eBPF [23].

DNS request is part of the HTTP message body in the DNS wire
format. However, regardless of the method, the DNS reply is sent in
the HTTP message body in the wire format. DoH is being utilized
in different browser vendors; Chromium-based browsers already
support DoH [34] [10] as does Firefox 62+ [28]. DoH is easier to
integrate with application development than DoT because it uses
the traditional web infrastructure and ports, whereas DoT uses a
new custom port (853). Unfortunately, DoH requires users to place
more trust in their browsers and providers for privacy, as all of the
information is located in one location.

2.4 BPF/eBPF
The Berkeley Packet Filter (BPF) [27] is a high-performance instruc-
tion set for a bytecode virtual machine inside of the Linux kernel. It
was created to be a fast programmatic network filtering tool. BPF
was extended in 2014 is what is now known as extended BPF (eBPF).
eBPF [16] is an extension to the classic BPF framework with hooks
to monitor processes beyond network applications. It can be used
for generic event processing in the kernel, profiling programs, and
libraries. This allows developers additional processing capabilities
for more complex applications. One of the main advantages of eBPF
is that it allows a user-space application to load code in the kernel at
run-time. This means that the new code is executed without recom-
piling the kernel or installing any optional kernel modules. eBPF
programs can use helper functions [29]. Figure 1 shows all available
eBPF tracing and performance tools. All components of the Linux
system are broken into blocks, with corresponding eBPF tracepoints,
corresponding to helper functions. These helper functions are im-
plemented to interact with the system in kernel or user space. The
helper functions can be used to print debugging messages, to interact
with eBPF maps, or to manipulate network packets.

One of the many helper functions provided by eBPF are user-
space probes, or uProbes (shown in red in Figure 1). uProbes allow
monitoring of function calls(uProbe), function returns(uRetProbe)
and user-specified locations in memory (USDT). To preserve system
functionality, uProbes only allow the monitoring program to read the
data, but there is no way to change the memory shown with uProbe.
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2.5 XDP
eXpress Data Path (XDP) [20] is a new programmable layer in the
Linux kernel network stack. It provides a run-time programmable
fast packet processing interface inside the kernel. This provides users
with access to the lower layers of the networking stack and allows
code to be run on packets based only on their headers. Utilizing
function hooks, user-defined eBPF programs can access and modify
packets in the NIC drivers. This allows XDP applications to reach
performances far beyond traditional networking hardware. XDP
is already actively used by many different groups and companies.
Cloudflare integrated XDP into their DoS mitigation pipeline [2]
while Suricata has XDP plugins [13] and Facebook released to use
XDP as a high-performance layer 4 load balancer [22].

2.6 Related work
In van Heugten et al. [36] performed a survey analysis of the cur-
rent methods used for ensuring user privacy in DNS resolution and
analyzed the performance of several methods. They compared the
overhead and privacy gains for DoT, DoH, DNSCrypt, and other
research techniques. The previous analysis was performed by Fed-
errath et al. [14], however, it was performed four years before RFC
7626, and doesn’t take many modern solutions into account.

Bushart et al. [8] proposed a method to analyze encrypted and
padded DNS traces. They combined size and timing information to
infer the websites’ user visits. Kim et al. [26] created DNSminer
which allows servers and others with collections of large DNS traces
to efficiently and reliably extract unique users. Borgolte et al. [4]
and Hounsel et al. [21] explored the policy implications of DoH by
measuring its performance and how encrypted transports for DNS
affect the end-user experience in web browsers. They analyzed and
investigated the performance, privacy, competition, and regulatory
policy. Hounsel et al. [21] measured how encrypted transports for
DNS affect the end-user experience in web browsers. The perfor-
mance measures are resolution time and web page load time. Brack
et al. [6] proposed the use of requests in DNS as an anonymization
layer by forwarding packets over public DNS resolvers.

Herrmann et al. [17] proposed EncDNS, an encryption service for
DNS that provides user privacy by taking advantage of the privatiza-
tion provided by the communication between a recursive resolver
and an authoritative name server, to encapsulate the DNS query such
that no single server knows both the source address and requested
lookup address. EncDNS was extended in structure by Oblivious
DNS [31]; this work proposed a cleaner way to interface between
the encrypted server and the recursive resolver. Additionally, they
addressed some issues with the key propagation inherent in EncDNS.

The security of many different DNS privacy techniques has been
evaluated as well. The authors of [18] demonstrate that even with
minimal knowledge of the DNS queries, traditional browsing car-
ries enough patterns to identify users. Meanwhile, Siby et al. [32]
analyzed both DoT and DoH traffic and demonstrated that on their
own, encrypting DNS traffic is not sufficient to preserve user privacy.
They suggested further extensions to DoH were required.

EXPOSURE[3] is one of the first passive DNS frameworks to
be developed. It proposed that a DNS monitor can look at only the
responses from the servers to gain information about network traffic

without compromising user privacy. Passive DNS doesn’t work if
used with encrypted DNS methods.

The originality of this paper is in providing a model and analysis
of the first use for eBPF and application-specific DNS privacy. Our
implementation allows users to have more control over their DNS
privacy. It supports both DNS and DoT fully with targeted support for
DoH as well. This method differs from other methods by providing
the user more control at the application level and through the use of
eBPF, which provides it with less run-time overtime.

3 THREAT MODEL
There are four groups of potential threats to user privacy that we
consider for our threat model: privacy from the ISP, the browser
vendor, attackers on a shared network, attackers on a shared system.
Each threat can be modeled as an actor with different capabilities
and interests. Our threat analysis assumes all four possible threats,
although that is not the common case. We also assume that the user
is not employing any other DNS privacy tool besides DoH and DoT.
With this in mind, we summarize the current protections provided
by DoT and DoH for each group.

(1) The ISP: The ISP is the most significant concern to user pri-
vacy due to the amount of control it has over a user’s data. The
ISP can control the stub resolver for the host, monitor any traf-
fic that the host publishes, and even monitor the sites the user
visits. Privacy from the ISP is the most complicated to address
as it requires a high level of encryption and anonymization on
all traffic entering and leaving the network. The ISP utilizing
user information to compile a user profile is considered a ma-
jor threat to user privacy. This threat model assumes that the
ISP can determine any DNS transaction to its stub resolver.
However, DoH and DoT are assumed to provide protection
if an alternative resolver is used than the resolver owned by
the ISP. Due to the scope of capabilities held by the ISP, it is
considered to be the most significant threat.

(2) The browser vendor (e.g. Google, Mozilla, Apple, Microsoft):
The browser vendor has access to all traffic conducted by the
user in the browser. If left unsupervised, the browser poses
a significant threat to user privacy. For our threat model, the
privacy risks of the browser vendor are only considered con-
cerning DNS privacy when users utilize DoH, as this is the
sole instance when the browser itself has control over DNS
queries. We choose to focus on the browser vendor over other
providers of DoH as there is already an existing ecosystem
of DoH providers who are also browser vendors. DoH pro-
vides users increased security from the ISP while decreasing
browser security by providing the browser vendor complete
access to user DNS transactions. Since DoH bypasses cleart-
ext DNS and DoT, the browser vendor is in complete control
and can gather information freely. Similar to the threats to
user privacy discussed with the ISP, the browser vendor com-
piling a user profile is considered a threat. The threat model
focuses on the security risks in the browser vendor caused by
the solution provided by DoH.

(3) Network Eavesdroppers: On shared networks, DNS requests
may be accessed by other users due to traffic monitoring or
flaws in encryption. Network eavesdroppers are perhaps the
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most common type of attacker, and therefore their capabilities
are the best understood. Network eavesdroppers are included
within the threat model but are well handled by DoT and DoH
as both provide well-established solutions to many of these
problems.

(4) Server Eavesdroppers: Server eavesdropping is more advanced
than network eavesdropping, and requires the attacker to be
on the same system as the user. This can occur in a cloud
environment or through other shared servers. Server eaves-
droppers have all of the same capabilities as network eaves-
droppers, however, they can also perform new types of attacks
relating to user searches and caches. Using only DoT does
not address these issues because of shared network caches,
but DoH or false DNS queries can mitigate it. Any solution
must be conducted in a more privileged ring of escalation to
be considered viable for these threats.

For our research, we assume that only the root user (any user
with permission to run eBPF programs) can be trusted with all user’s
DNS queries. Any other users or permissions are assumed to be a
potential threat. Our research follows the model provided in Kim et
al. [26] that determines the amount of information leaked in a given
query. Our goal is to minimize the number of bits of information
that anyone DNS server receives, thus limiting opportunities to build
profiles of the user.

3.1 Attack Descriptions
This paper considers the following attacks:

• De-anonymization: De-anonymization attacks allow leakage
of personal information that connects users to queries or
creates profiles of users based on their queries. This attack is
most frequently observed on the ISP or the browser vendor.
Neither DoT nor DoH currently has the ability to address this
type of attack. For this paper, we are trying to ensure that a
given resolver is unable to construct an accurate profile of the
user.

• DNS Query Leakage: DNS Query Leakage attacks occur
when any part of the DNS query is leaked to any observer
aside from the resolver. This can occur due to a lack of encryp-
tion, timing attacks, or other similar attacks. DoT provides
encryption solutions but cannot address timing attacks, while
DoH addresses both encryption and timing attacks.

• Man-in-the-Middle: Man-in-the-Middle attacks occur if an
attacker can intercept DNS communications. Both DoT and
DoH use TLS to address this.

• Malicious Resolver: Malicious Resolver attacks are DNS
resolvers that return incorrect IP addresses though the error
response mechanism. Neither DoT nor DoH has a way to
interact with this.

• DNS spoofing: DNS spoofing attacks also return incorrect
IP addresses, however, they are returned by a server down-
stream from a DNS resolver. While DoT and DoH do not
directly provide security for these attacks, the infrastructure
required to enable DoT and DoH provides security. Standard
encryption and certification methods address this attack.

4 METHODOLOGY
In this section, we describe various ways that eBPF can be leveraged
to aid privacy-conscious users in protecting their privacy.

4.1 Design Goals and Overview
eBPF provides developers with far greater access and control over
user-space programs, which we can leverage to provide greater
privacy protection of users’ DNS requests. We look into the potential
benefits provided by eBPF for traditional DNS as well as the newer
DoT and DoH. As shown in Figure 1, eBPF provides users with a
wide variety of filtering and monitoring hooks across the network
stack. We aim to use the functionalities of eBPF to give the user
more control over their DNS privacy.

The core of this research is the use of eBPF to provide users with
an application-specific DNS implementation, by adding functionality
to invisibly edit the requests so that each application can point to
an arbitrary server. We also demonstrate a method to capture every
single DNS request and forward it to a group of other servers to
detect potential prioritization or differences between responses.

4.2 Implementation
Our DNS system was implemented in Python 3.6 on top of Ubuntu
18.04.3, with kernel 5.0.0.27 using python-bcc[23]. We implemented
the system using a hash table of process names and destinations.
The system uses XDP to edit the packets before transmission. We
hash the name of the application in eBPF and take advantage of
the system’s ability to determine which program is sending a given
packet. From there we determine if the packet is a DNS request and
apply the appropriate filtering depending on the hash table rules. By
default, we use the system DNS server if there is no specific rule to
be found. We chose to implement our method application-specific
because it was the most structurally complicated and therefore the
best demonstration of eBPF capabilities.

For DoT implementation, we use the eBPF AF socket, a kernel-
level socket with instantaneous data communication between ker-
nel and user-space. We intercept the TCP packet before it leaves
the system and change the destination address of the DNS server.
We complete the negotiation by acting as a trusted MiTM. In this
way, the user-space program behaves normally but does not trans-
mit outside of the system. Structurally, we were able to build an
application-specific DoT system in the same way we built our DNS
system. However, there is more complexity added due to the TLS
handshake and encryption requirements.

Additionally, we use eBPF uProbes to hook into the DoH encryp-
tion and decryption for monitoring sent requests. In the uProbes,
we were able to see the arguments between the encode and decode
functions and their respective return values. While we cannot edit
any of these, this allows us to reconstruct the message that is sent
and display its contents to the user. It is also possible to construct
and send fake DoH requests. We don’t believe this is valuable since
the Browser vendor operates the DoH server and can quickly verify
that the fake requests are essentially noise and discard them. This
means that any non-privacy conscious actors can quickly verify the
real look-ups. Therefore, we do not focus on this functionality.
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Figure 2: Normal functionality of DNS, DoT, and DoH vs. our eBPF implementation

For all three versions of our tool (eBPF for DNS, eBPF for DoT,
eBPF for DoH), the 1BD-improved and EFF’s panopticlick algo-
rithms are utilized [12]. To determine which server to send the next
packet of information to, our eBPF tool uses the algorithms to de-
termine how much information is leaked to a given DNS resolver.
We compute the number of bits exposed in real-time. To reduce
leaking information to multiple resolvers, a list of resolved domain
names is saved to prioritize sending information of similar queries
to the same DNS resolver. In DNS and DoT, this list is leveraged to
minimize the number of bits exposed. For example, if a user were
querying the top Alexa 500 site, our eBPF system would choose the
resolver for which visiting the site would reveal the least amount
of information about the user. Subsequent revisits to the same site
use the resolver that satisfied the first query. However, in DoH, as

this behavior cannot be manipulated, the amount of bits exposed is
calculated and shared with the user. In order to allow users to inter-
act with the system, we provide a simple application that identifies
running applications and allows users to specify which DNS or DoT
server they should connect to. This application also monitors DoH
and displays an estimation of leaked information.

4.3 eBPF for DNS
Traditionally, the best method for concealing DNS activity was to
use the most popular DNS server and ’hide’ in the noise of the
massive amount of requests they received every day. However, with
the recent advent of big data processing technology, this strategy
is no longer valid. As such, the best strategy has become to shift
queries to a wide variety of competing DNS servers, providing an
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incomplete or limited picture of the user’s browser activity to any
single server and making tracking the user more difficult. In order
to spread traffic, the current solution is to use a DNS sink hole [7]
or a similar router-level solution as the system DNS is not designed
to support arbitrary server changes. However, these systems require
control over the router, and on complex networks using this method
is not feasible and does not provide extra privacy.

With the advent of XDP, there is now an efficient low-cost way
for users to route DNS traffic to arbitrary servers at the system level.
XDP is a component of eBPF that has been extended to be able to not
only monitor but to change data as well. As eBPF is automatically
aware of which process is sending a packet and can easily find
the type and content of a normal packet, users can now filter DNS
requests by applications. As shown in Figure 2, all requests, and
responses are filtered through the XDP filter before being sent to
the server or returning to the user. This masks activity by directing
different requests to different servers. eBPF is so versatile that a user
can filter the application, the time when it was sent, or even maintain
a circular buffer of acceptable servers and send one request to each
in turn.

Even with eBPF, users are not protected from Network Eaves-
droppers nor ISP monitoring due to the lack of encryption on DNS.
However, DoT and DoH are designed to address this issue.

4.4 eBPF for DoT
DoT is effectively the same as traditional DNS but it is encrypted
using TLS. Thus, it provides privacy from network eavesdroppers
and ISPs concerning the content of browsing.

We use a novel eBPF functionality called an AF socket modeled
off of the previous ktls work [37] which creates a virtual socket to
route all traffic through. In this way, we capture the DoT request,
edit it to direct it to the specified server, and then send the request to
the virtual socket for handshake and communication. Once we have
the final reply, we connect the socket back to the normal application.
From the application’s perspective, it simply performs a DoT query
and receives a result as it normally would, but underneath it, we
are capable of changing the DNS server it communicates to. For
example, using eBPF in this way, an application may request a query
from one server, but it is intercepted before the first TLS request
is sent and instead sent to a server chosen by the user. This allows
the user to send activity to an arbitrary DoT server much like they
would a DNS server, as shown in Figure 2. This method allows us
to do the same application-specific filtering as traditional DNS in a
DoT environment.

4.5 eBPF for DoH
DoH gives users more privacy from ISPs at the cost of less privacy to
browser vendors. Since DoH uses purely browser-internal functional-
ities (encrypted GET/POST), it makes DNS requests from browsers
hard to analyze from the outside. At the moment there is no known
way for a user to monitor their DoH requests and see exactly the
data being submitted, except for through the browsers debug console.
This means a user has no control over the DNS data being generated
on their behalf.

While eBPF does not allow developers to directly interfere with
DoH requests like with normal DNS requests, we can take advantage

of the monitoring and tracking capabilities provided by our uProbes
to monitor the creation of the DoH requests and the decoding of
the responses. This allows us to verify that the browsers aren’t
transmitting extra data and alert users about how much a given DoH
provider knows.

While, we cannot provide application-specific DNS privacy with
DoH systems, by sending fake requests to the server it obfuscates
the request the user is interested in. Theoretically, as the browser
still knows which request is the truth, it can still track the user from
source to destination. Therefore, we are unable to provide a full
solution for direct privacy to DoH users.

However, the key advancement of this approach is that it can
be used to monitor functionality. The user can use our method to
view the information the browser is providing about DNS lookups
to monitor all information shared by the browser. This allows the
user to know exactly what information is being transmitted by the
browser, which can be used to determine when it is time to change
DoH providers, or when it is time to disable DoH and take advantage
of our application-specific eBPF for DNS or use DoT to preserve
privacy. Additionally, we can provide guarantees that the browser
is only sending information to the chosen DoH provider, and not
leaking information to other systems. This provides the user with
direct control over their DoH usage and reduces risks in privacy at
both the ISP and browser levels.

5 EXPERIMENTS & RESULTS
We analyze the performance impact of using eBPF to route all DNS
traffic to different servers. The system is tested with application-
specific and time-based routing. We outline three experiments that
evaluate our system from a privacy perspective and quantify the
overhead introduced by our system.

5.1 Performance Experiment Setup
The overview of our experimental setup is outlined in Figure 3.
To verify the application-specific DNS code was working and not
detectable, we set up the system with four applications pointing to
four different DNS servers. Applications used included Firefox, Curl,
nslookup, and wget. The four DNS servers we used were 8.8.8.8
(Google), 1.1.1.1 (Cloudflare), 9.9.9.9 (Quad9), and 158.64.1.29
(Fondation RESTENA). To verify the packet filtering and simulate
both types of adversaries, we used both Wireshark and a virtual
switch which recorded all DNS traffic. To verify that the filtering
was not detectable by the applications, we recorded their debug
output and warnings, and ensured that there were no new errors
emitted by the application. For our experiments we only used IPV4.

Additionally, we evaluated our eBPF system while it was moni-
toring DoH packets. While we are unable to fully redirect the DoH
packets with the current limitations of uProbes, we monitored the
requests and verified the returns. We exported these returns to a
user and raised an alert if there was a deviation between the DoH
return the system lookup. While such a system wouldn’t be used in
practice, we found it helpful to confirm that the DoH providers were
not trying to shape traffic based on information from the browser.

Our baseline analysis was conducted by performing a DNS lookup
for each site of the Alexa 500 [1]. These websites were chosen be-
cause they were the most frequently used. We compared the returned
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Figure 3: Experimental Network overview

IP addresses of many different DNS providers until we found a
group of four that returned the same set of addresses in the same
order. This ensured that there would be no latency issues with the IP
addresses. We also ensured that the DNS providers supported DNS,
DoT, and DoH with the same set of addresses. Next, we leveraged
the application-specific DNS framework to determine the overhead
provided. We ran four different applications (Firefox, curl, wget,
nslookup) and measured the overhead of the application-specific
DNS method against the normal system DNS with each application
being assigned to one of our chosen DNS providers. We assigned
each application to a unique DNS server and had it query each of
chosen the Alexa 500 sites, measuring both the time and the CPU
overhead of the query.

5.2 Performance Experiment Results
As presented in Figure 4, our eBPF solution does not substantially
impact the overhead of a DNS connection, adding only 0.44% to the
time it takes for a normal look-up. Meanwhile, DoT has an overhead
of an additional 8.15%. We verified that each request is sent to
the correct new DNS server by comparing the returned address
with that of a DNS query from the virtual switch. We compute the
time overhead by comparing the lookup times for all of the Alexa
500 sites both with and without our eBPF solutions. We repeated
the experiment 20 times to get a clustered grouping of results for
comparison.

While we could not directly alter the DoH packets, we measured
the CPU overhead for monitoring the calls and returned values as an
additional 3.13%. We show that eBPF is a valid method for securing
privacy by spreading DNS server traffic and limiting tracking. To
compute the CPU overhead, we measured the number of cycles
used by the 4 applications, both with our eBPF uProbes monitoring
and without. From there we calculated the number of additional
cycles that were consumed by the monitoring. Similar to the above,
we repeated the experiment 20 times to get a consistent clustering.
While the DoH solution does take less time then the DoT solution,
it is important to remember that the DoH monitoring is a passive
monitor, not an active redirection. A full DoH redirection would

require more overhead then DoT owing to the extra overhead of the
HTTP connection.

5.3 Privacy Experiment Scenarios
To evaluate if our eBPF implementation protects the user’s privacy,
we performed three types of experiments. For the first type, we
modeled the attacker as a user on the same system who could send
DNS queries of their own, monitor traffic amounts, and even run
WireShark in an unprivileged manner. We find that this is an adequate
approximation for attacks on shared computing resources, such as
cloud computing and similar systems [30][15].

For the second type, we placed an eavesdropper on the network
to disrupt DNS queries and monitor all queries from our selected
system. We show that our eBPF for DoT and eBPF for DoH systems
described in Section IV prohibit information leakage and uphold
user privacy.

The third type is based on Herrmann et al. [18], where bits of
information exposed to a DNS server based on applications running
and sites visited are calculated. It demonstrates how DNS servers are
able to build a user profile and what information is most valuable.
Using the 1BD-improved described in Section IV, we extend our
eBPF implementation to minimize the number of bits sent to any
server from a list of viable options. We compute the number of
bits exposed in real-time for DNS and DoT. Although we cannot
change the packets nor improve privacy, we are able to expose what
is being leaked and flag any potential anomaly for the user. We show
that the number of bits exposed is minimized based on the number
of available servers and that a user running our system has better
privacy than a user without it. Further, we compare our system with
the test implementation of EncDNS, to compare both information
exposure and overhead.

5.4 Privacy Experiment Setup
The same structural components of the virtual environment used to
evaluate performance were used to analyze user privacy. A private
network was established through the use of Ryu [35] in a simulated
environment. The DoH server and four DoT/DNS servers were
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Threat Attack Strategy DNS DoT DoH EncDNS eBPF + DoT eBPF + DoH
ISP De-anonymization Vulnerable Vulnerable N/A Partially Protected Protected N/A

DNS Query Leakage Vulnerable Only if Allowed Protected Protected Only is Allowed Protected
Malicious Resolver Vulnerable Vulnerable Protected Vulnerable Partially

Protected
Protected

Browser Ven-
dor

De-anonymization N/A N/A Vulnerable Vulnerable N/A User Given
Warnings

Man-in-the-Middle N/A N/A Vulnerable Protected N/A Protected with
User Support

Network De-anonymization Vulnerable Protected Protected Protected Protected Protected
Eavesdroppers DNS Query Leakage Vulnerable Protected Protected Protected Protected Protected

Man-in-the-Middle Vulnerable Protected Protected Protected Protected Protected
Malicious Resolver Vulnerable Vulnerable Protected Partially Protected Protected Protected
DNS spoofing Vulnerable Vulnerable Protected Protected Protected Protected

Server De-anonymization Vulnerable Protected Protected Vulnerable Protected Protected
Eavesdroppers DNS Query Leakage Vulnerable Vulnerable Protected Vulnerable Protected Protected

Man-in-the-Middle Vulnerable Protected Protected Protected Protected Protected
Malicious Resolver Vulnerable Vulnerable Protected Partially Protected Protected Protected
DNS spoofing Vulnerable Vulnerable Protected Protected Protected Protected

Table 1: Evaluation of security measures for DoT and DoH with and without our eBPF solution. Only attacks with vulnerabilities to
each threat are included.

simulated, rather than chosen from active servers, and connected to
a virtual machine. Within this network, we created hooks for all four
groups of potential privacy threats (Section 3). Instead of importing
all of the Alexa 500 sites, the 50 most visited sites were loaded on
the simulated name servers. Each of our simulated name servers
had a cache of 15 addresses set to be served in approximately 0.03
seconds, as compared to an un-cached response of 0.1 simulated
seconds [33][24]. Addresses were cycled in-and-out of the cache
in a FIFO queue. All three eBPF tools (eBPF for DNS, eBPF for
DoT, eBPF for DoH) were run on the test system separately and
continuously analyzed the information shared with each attacker. On
the virtual machine, we had two users: an experimental user and
an attacker user. The experimental user followed a set pattern of
queries though the Alexa top 50 sites. The attacking user was set to
continuously query the core name servers for the top 50 websites
and measures the response time.

For each potential source of information exposure, we utilized
a set of metrics to consider when information would be leaked to
a theoretical attacker. For the network eavesdropper, any domain
name it is capable of reading is considered exposed. For the server
eavesdropper, every time the attacking user was able to predict a
site that was present in the cache of the experimental users’ queries,
it was considered a leaked site. For the DoH server, since we are
unable to directly edit the information, we instead use 1BD-improved
and the EFF’s Panopticlick [12], to measure the bits and compare
them with our local calculation derived from Hermann et al. [18].
Finally, for the ISP simulation, we place bit counters on each of our
four DNS servers which incremented every time a new URL was
requested from the experimental user. Once a counter reaches 30
unique addresses, we consider the user deanonymized [18].

5.5 Privacy Experiment Results
In regards to the first scenario, the network eavesdropper, we found
that cleartext was compromised and that both DoT and DoH per-
formed as expected by keeping the DNS transactions private through
encryption. EncDNS was easily capable of defeating this as well,
which is unsurprising given that this is a simple attack. The second
scenario, the shared system attacker, had the same win condition. For
every address it determined the user was querying, it was considered
successful in breaching a users’ privacy. It succeeded at a higher
rate than the network eavesdropper and was capable of defeating
the DoT implementation due to cache linkage over the shared stub
resolver. However, both the EncDNS privacy tool and our method
were capable of defeating the shared system attacker by spreading
DNS queries over multiple systems.

The third experiment revealed issues with the traditional DoT and
DoH approaches. For DoH privacy, a simple running comparison
of our ’calculated’ bits revealed and ’actual’ bits revealed was con-
ducted on the server-side. The ’actual’ bits revealed were calculated
using a ’truth’ reference provided by EFF. We found that EncDNS
underestimates the amount of information revealed due to not tak-
ing into account the browser user-agent string. In this case, eBPF
provided the user with the number of leaked bits as well as updated
information on the user-agent string, information not provided by
other tools. This provides the user with more information about
potential threats to anonymity, a vital concern for many users.

In regards to scenarios addressing the ISP, it was determined that
EncDNS leaks considerably more information even if it is set to
do a parallel resolution. It does not take into account what informa-
tion the server already knows and thus, over longer periods, it will
eventually leak all information about the user to the ISP. This is a
significant threat to user privacy, as allowing the ISP to access all
user information is of utmost concern. Using our tool, eBPF is aware
of how much information it has given to each server, and is able to
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a) No eBPF running

(b) Using eBPF

Figure 4: DNS lookup time measures of the Alexa top 500. Min-
imal overhead is observed, indicating good performance.

load balance the bits of information revealed to each resolver. The
bits revealed were determined to be minimal, protecting the user.

5.6 Discussion
Our results are summarized in Table 1. Our tool provides the user
with thorough protection in all cases. Using our solution, we have
demonstrated that our eBPF tools allow users to quickly and effi-
ciently protect users from data leakage and privacy attacks. Our
tool provides an avenue for users to continuously change which
DNS server they are using or to sandbox applications into their
unique DNS server. This tool provides users with a greater amount
of control over their data and provides a user-friendly method for
privacy-conscious users. While DoH appears to provide protection in

the majority of cases, it is important to consider the extreme vulner-
abilities posed by the browser vendor not addressed by DoH. Using
our tool, the user is protected in all cases with DoT and additionally
provides support for DoH in regards to the browser vendor by provid-
ing users with a complete analysis of their privacy and ensuring that
data leakage only occurs to the chosen DoH provider. Additionally,
through experimental evaluation, it was determined that the browser
can leak an arbitrary amount of information using the user-agent
string. Since the browser controls the user-agent string, an arbitrary
amount of data may be leaked to the vendor. The most adequate
action suggested for this type of attack is to warn the user if their
identification changes for any reason. Such warnings are provided to
the user by our eBPF implementation. We demonstrate that such a
solution does not impact application performance. Given that DNS
providers now have the technological capabilities to extract specific
user information from DNS traffic, we believe that users will be well
served by this method, allowing users to shift their DNS providers
regularly. Our system outperformed the DNS privacy tool, EncDNS,
in privacy against the ISP and browser vendor, with comparable
behavior for more common eavesdropping threats. Ultimately, it
comes down to user preference and the level of trust, but this method
provides a far greater amount of control to the user with minimal
performance overhead.

6 CONCLUSION AND FUTURE WORK
6.1 Conclusion
In this paper, we demonstrate a new way to help provide DNS
privacy to users, though the use of eBPF. Using our method, a
user can control their DNS traffic at the application level, which is
currently a slow and time-consuming process using other methods.
We demonstrate that it can be done without heavily impacting the
performance of the applications. While eBPF is unable to invisibly
interact with encrypted communications such as DoH, we instead
provide monitoring and verification of the contents of the lookup.
For privacy-conscious users, we recommended that they regularly
change their DoH providers to lessen the impact of fingerprinting.

6.2 Future Work
In the future, we plan to expand our eBPF framework across addi-
tional DNS options. Of chief interest is in providing users with more
control over their DNS queries. We hope to develop new techniques
to analyze encrypted DNS traffic before transmission and potentially
provide both filtering and alterations. Additionally, we aim to al-
low network administrators to recreate the functionality currently
provided by passive DNS in a DoH and DoT filled world without
compromising user privacy.

A question worth considering is at which point conscious privacy
monitoring becomes too extensive, as there are many benefits to
ISP DNS monitoring, such as network shaping and pre-fetching.
While increasing user privacy is of vital importance, a completely
private internet would probably not work as well, and may not be as
enjoyable for the user. Awareness of the long-term impact should be
considered when creating such tools, for both increased privacy and
maintaining a coherent system.
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