
Antonio	Ken	Iannillo
Tutor:	Domenico	Cotroneo
XXX	Cycle - II	year presentation

Dependable Android

Android
87,6%

iOS
11,7%

Windows	Phone
0,4%

Others
0,3%

Mobile devices (including smartphones, tablets and
wearables) assist people in their personal activities, and
are today a fundamental resource to communicate and
to benefit from cloud services: mail, data storage, e-
commerce, banking, and social networking are only few
examples. In the near future, they will become digital
wallets and keepers of digital identity. Moreover, mobile
devices are used in business contexts to access to
sensitive enterprise data and services.
As a result, users expect a reliable platform, which
should be responsive and avoid smartphone crashes and
data losses.
Assuring the reliability of mobile devices is a challenge
for smartphone vendors: devices have become
significantly complex and feature-rich, are upgraded at a
fast pace, and are heavily customized by vendors in
order to differentiate their products from competitors.

Android OS is currently dominating the market.
The Android OS grew up to more than 6 millions of lines
of Java and C/C++. Moreover, previous studies showed
that software complexity and vendor customizations
have a negative impact on Android reliability in terms of
bug density and vulnerabilities [1][2][3]. This reflects in
poor quality perceived by users, and affects the
popularity of mobile products on the market.
Thus, the goal of this PhD is to try to answer research
questions such as:
• HOW CAN A MANUFACTURER ASSESS THE

DEPENDABILITY OF ITS MOBILE DEVICES?
• WHAT KIND OF FAILURES CAN A SMARTPHONE

EXPERIENCE? HOW DOES IT REACT?
• HOW CAN ANDROID DEPENDABILITY BE IMPROVED?
• HOW CAN MOBILE VENDORS’ DEVICES BE COMPARED

W.R.T. DEPENDABILITY?

[1] A. K. Maji, K. Hao, S. Sultana, and S. Bagchi, “Characterizing Failures in Mobile OSes: A Case Study with Android and Symbian,” in Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on, 2010. 
[2] A. K. Maji, F. A. Arshad, S. Bagchi, and J. S. Rellermeyer, “An Empirical Study of the Robustness of Inter-Component Communication in Android,” in Dependable Systems and Networks (DSN), 2012 42nd Annual IEEE/IFIP International Conference on, 2012. 
[3] L. Wu, M. Grace, Y. Zhou, C. Wu, and X. Jiang, “The impact of vendor customizations on Android security,” in Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security, 2013. 

I’m a member of the Dependable System and Software Engineering Research Team (DESSERT), formerly known as MobiLab group, at DIETI -
UNINA. I collaborated with a global manufacturer of Android smartphones in a research project that aimed to evaluate dependability in the
Android OS. I’m currently spending 7 months at Northeastern University, in Boston, supervised by prof. Cristina Nita-Rotaru.

BUG	REPORTS	ANALYSIS DEPENDABILITY	IMPROVEMENT SOFTWARE	REJUVENATION

SOFTWARE	AGING	ANALYSIS
All	experiments	exhibit	a	statistically-significant	positive	trend	in	the	Launch	Time	series
• Average	LT	trend:	9.15E-03	ms/s:	estimated	degradation	of	659ms,	on	average,	of	the	

launch	time	after	20	hours	of	testing
• Worst	LT	trend:	6.39E-02	ms/s:	estimated	degradation	of	4.6	seconds	after	20	hours

• Android	devices	suffer	from	software	aging
• Software	aging	in	Android	depends	on	the	

applied	workload
• System	Server,	System	UI,	and	Surface	Flinger	

proportional	page	size	(PSS)	measurements	are	
highly correlated	with	user-perceived	aging

• System	Server and	System	UI	are	exposed	to	
performance	degradation	due	to	inflation	and	
fragmentation	of	the	heap

• Specific	tasks	inside	the	System	Server	process	
are	more	prone	to	aging

• Android	rejuvenation	should	adopt	a	
measurement-based	approach

SOFTWARE	AGING	EXPERIMENTS

DEV

HIGH-END

LOW-END

APP

STOCK-1

STOCK-2

3PARTY

L&K

HIGH

LOW

EVENTS

SWITCHES

MIXED

NONE

STO

FULL

NORMAL

D. Cotroneo, F. Fucci, A.K. Iannillo, R. Natella, and R. Pietrantuono, 
”Software Aging Analsysis of Android OS,” in Software Reliability 

Engineering (ISSRE), 2016 IEEE 27th International Symposium on, 2016

FAULT	INJECTION	TESTS
Logs	are	parsed	to	retrieve	the	outcomes,	such	as:
• Crash:	a	native	process	or	a	user	app	has	crashed	
• Application	Not	Responding	(ANR):	a	user	app	is	stalled	
• Fatal:	a	high-severity	error	is	raised	by	the	Android	OS
• No	Failure:	the	Android	OS	is	robust	against	the	injected	fault,	and	

no	significant	effect	is	perceived

DEPENDABILITY	BENCHMARKING

0 50 100 150

Camera	Subsystem

CRASH

ANR

FATAL

NO	FAILURE

0 100 200 300 400

Phone	Subsystem

0 20 40 60 80 100 120

Vendor	1

Vendor	2

Vendor	3

Sensors Subsystem

FAILURE	MODEL	AND	FAULT	INJECTION	TOOL
The	Service	Interface	and	Resource	(SIR)	method	is	defined	to	construct	the	
failure	model,	based	on	five	failure	types.

SIR

Component	
Unavailability

Resource	
Management

TimelinessData	
Corruption

Service	
Misuse

To	inject	the	failures	defined	in	the	failure	model,	the	fault	
injection	tool	is	able	to	cover	the	interfaces	and	resources	of	
Android	components.	Currently,	the	tool:
• can	inject	in	4	subsystems	(phone,	camera,	sensors,	and	system	

server),	16	components,	and	75	fault	injection	targets	
(interfaces	and	resources);

• supports	for	Android	L	and	M,	while	the	porting	for	Android	N	
is	under	development;

• is	about	17k	lines	of	code	(11k	C++,	3.5k	C,	2k	Python).

RESEARCH	OVERVIEW
Android	OS	
Internals	
Analysis	

Field	Data	
Analysis

Bug	Reports	
Analysis

Failure	Model Fault	Injection	
Tool

Dependability	
Benchmarking

Dependability	
Assessment

Dependability	
Improvement

Software	Aging	
Experiments

Software	Aging	
Analysis

Software	
Rejuvenation	
Solutions

Bug	ReportsData	
Crawling

Test	
Generation	
Criteria

Extraction	
and	

Analysis

New	Bug	and	
Vulnerabilities

Test	
Generation	

and	
Execution

During my stay in Boston, I’m going to work on a project in collaboration with
my advisors from both University of Naples and Northeastern University. The
main idea is to improve test efficiency by providing generation criteria based
on previous bugs.

Fault	injection	will	be	adopted	to	test	the	fault	tolerance	mechanisms	of	the	
system,	in	this	case	Android	OS.

Android OS may be
“rejuvenated” by using
the results from the
Software Aging Analysis.
This analysis provided
hints on when and where
Software Rejuvenation
actions should be taken.
Next steps are to define
these actions and how to
perform them.

The	fault	injection	tool	
collects	logs	and	other	
information	during	the	
experiment.	These	
outputs	should	be	deeply	
analyzed	to	detect	and	
correct	issues	of	fault	
handling	inside	the	
Android	OS.


