
Facoltà di Ingegneria
Corso di Studi in Ingegneria Informatica

tesi di laurea magistrale

A Fault Injection Tool For Java Software
Applications

Anno Accademico 2012-2013

Relatore
Ch.mo Prof. Domenico Cotroneo

Relatore
Dr. Roberto Natella

Correlatore
Dr. Santonu Sarkar

Candidato
Antonio Ken Iannillo
matr. M63000242

to the True Love

“A knowledge of the existence of something we cannot penetrate, of the manifestations of

the profoundest reason and the most radiant beauty, which are only accessible to our

reason in their most elementary forms,it is this knowledge and this emotion that

constitute the truly religious attitude„

“I maintain that the cosmic religious feeling is the strongest and noblest motive for

scientific research„

Albert Einstein, The World As I See It

Table of Contents

Introduction 1

1 Software Fault Injection 3

1.1 Basic Concepts . 3

1.2 State of Art . 6

1.3 Objective of the Thesis . 7

1.3.1 Injection of Software Defects 8

1.3.2 Injection of Exceptions . 10

2 Tool Design 12

2.1 Overview Architecture . 12

2.1.1 Façade Package . 13

2.1.2 Injection Package . 14

2.1.3 JarManagement Package . 16

2.1.4 Profiling Package . 17

2.1.5 Util Package . 18

2.1.6 Remote Activator . 19

2.2 Utilities . 20

2.2.1 Concepts and Definitions . 20

2.2.2 Boundary Table . 21

2.2.3 Loop Table . 21

2.2.4 Informer . 22

2.2.5 Instruction Tree . 22

I

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

2.3 Software Fault Operators . 25

2.3.1 Java Operator - Missing Method Call Design 27

3 Tool Implementation 29

3.1 Development Environment . 29

3.2 Java Operators . 30

3.2.1 Java Operator - Missing Method Call Implementation 31

3.3 Remote Fault Activator . 32

4 Case Study: Duke’s Forest 34

4.1 Overview of the Case Study . 34

4.2 Experimental Design . 36

4.3 Experimental Results . 38

4.3.1 Experiment A . 39

4.3.2 Experiment B . 39

4.3.3 Experiment C . 40

4.3.4 Experiment D . 41

4.3.5 Experiment E . 41

4.3.6 Experiment F . 43

4.4 Discussion of Results . 45

Conclusion and Future Developments 48

A Swinging Algorithm Example 50

B Server Logs 53

B.1 Experiment C . 53

B.2 Experiment E . 54

B.3 Experiment F . 58

B.3.1 First Log . 58

B.3.2 Second Log . 60

Bibliography 66

II

List of Figures

1.1 Detailed View of Error Propagation 4

1.2 The fundamental chain of dependability threats 4

1.3 Faults Classification . 5

1.4 Fault Coverage of the Representive Faults Types 9

2.1 Overview Architecture . 13

2.2 Façade Package Design . 14

2.3 Injection Package Design . 16

2.4 JarManagement Package Design . 17

2.5 Profiling Package Design . 18

2.6 Util Package Design . 19

2.7 Example of Functional Block and Its Property 23

4.1 Architecture of the Duke’s Forest Application 35

4.2 Screenshot Experiment A - Payment Over $1000 Not Denied 39

4.3 Screenshot Experiment B - Payment Under $1000 Denied 40

4.4 Screenshot Experiment D - Error Page 41

4.5 Screenshot Experiment E - Blank Page with Not Working Navigation

Buttons . 42

4.6 Screenshot Experiment F - Page with Discordant Message 43

4.7 Screenshot Experiment F - Login Invalid after Deactivation of the

Fault . 44

A.1 Swinging Algorithm Example - (A) (B) 50

III

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

A.2 Swinging Algorithm Example - (C) (D) (E) 51

A.3 Swinging Algorithm Example - (F) (G) (H) 52

IV

Acknowledgement

I would like to remember all those who have helped me in the writing of the thesis

with suggestions, criticisms and observations: they deserve my gratitude, though I

shall be responsible for any errors contained in this thesis.

Foremost, I would like to thank my supervisor Prof. Domenico Cotroneo for

believing in me with the chance to experience such a worthy conclusion for my

university student’s years. His patience, motivation, enthusiasm, and immense

knowledge have been a great support.

I would like to express my immense thankfulness to the other supervisor of the

thesis, Dr. Roberto Natella. His guidance helped me in all the time of research

and writing of this thesis. I could not have imagined having a better advisor and

mentor for my master degree thesis.

I would also like to thank the co-supervisor, Dr. Santonu Sarkar. He made my

summer and turn the first work experience of an Italian boy, in perfect fuel for my

whole life. He showed me a work environment of innovation, harmony and much

more while he gave me a practical support and purpose for this thesis.

Besides my supervisors, I thank Dr. Rajeshwari Ganesan, Arpan Roy and Kaja-

ri Ghoshdastidar, for their support in the Infosys Labs in Bangalore, India; Manuel

De Luca and Agostino Savignano, my colleagues at university and during the Indian

internship, and all my new friends from the internship, for the stimulating discus-

sions, for the endless days we were working together before deadlines; Prof. Stefano

Russo, Prof. Marcello Cinque, Dr. Antonio Pecchia and Dr. Flavio Frattini, to-

gether with Prof. Cotroneo and Dr. Natella, for helping to make this experience

possible.

V

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Special thanks go to my university colleagues and mates, especially to Daniele,

who showed me, from the very first moment of my whole university experience,

uninterrupted social support; to the companions of our bizarre, funny, unbelievable,

off-site lives, for all the times we forget about problems and go on having moments in

Casa Pastore, Casa Scaperrotta and Casa Pecoraro-Della Ragione; to my brothers

and sisters in Avellino, for making me feel always welcomed and for all the reasons

of growth we come up against; to my dearest and oldest friends Fabio, Giacomo

and Antonio, for your sincere and gratifying friendship.

In particular, I am grateful to have met a woman so strong and brave to be able

to see always, in a way or another, what is right. Elisa makes my life enchanted

and she always encouraged me to move forward.

Last but not the least, I would like to thank my family: my relatives, for the

feeling that only a genuine Italian family can give; my brother Stefano Kenji, for all

the times he could not stand me and I could not stand him but, mainly, for another

eye on the world with a point of view complementary to mine; my parents Anna

and Gino, for giving birth to me at the first place and supporting me throughout

my life. They give me the possibility and the opportunity to pursue my dreams.

VI

Introduction

Nowadays technology is everywhere and software plays a central role. With the ad-

vent of new computing methods, and with new business demands, software is being

developed and deployed for diverse scenarios. The complexity of the application

has increased by an order of magnitude. The applications run in new computing

platforms such as virtualized platforms or in hand-held devices. The applications

are offered to people as a 24x7 service. With the growing complexity, software is

becoming more prone to faults, many of which are extremely hard to reproduce

in a traditional testing environment. It is becoming more common that all the

software defects do exist but no one knows exactly where they are, when they will

reveal themselves and what could be the possible consequences of their activation.

It is practically impossible to guarantee that software is defect-free, due to many

complex requirements to fulfil and to budget and time constraints that limit testing

activities. Moreover, Dijkstra’s thesis [1] demonstrates that testing cannot guaran-

tee the absence of errors, but it can only show their presence. Thus, the defect-free

software does not exist. What we can do it is to enhance our software with Fault

Tolerant Mechanisms and Algorithms (FTMAs).

Fault-tolerance or graceful degradation is the property that enables a system

to continue operating properly in the event of the failure of (or one or more faults

within) some of its components and the FTMAs enable a system to continue its

intended operation, possibly at a reduced level, rather than failing completely, when

some part of the system fails. These algorithms detect that it has made an error,

then they take the system state at that time and corrects it, to be able to move

forward, or revert the system state back to some earlier, correct version and moves

1

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

forward from there. Fault-tolerance also impact on availability of a system, i.e. the

proportion of time a system is in a functioning condition. FTMAs ensure a high

availability of the system. Fault Injection is the process of deliberately introducing

faults into a system to assess its behaviour in the presence of faults. The FTMAs

should make the system as robust as possible and Fault Injection can validate and

improve them.

The objective of this thesis is to show the development of a Fault Injector for

Java programs. Java programs run on a virtual processor, called Java Virtual Ma-

chine (JVM), which executes a particular intermediate code, called Java bytecode.

The tool emulates bugs, i.e. human mistakes occurring during development; and

external faults, i.e. exceptional condition of external systems such as a database

disconnection. They can be emulated by corrupting a program. Since recently all

the systems contain Components Off-The-Shelf (COTS), source code is not always

available and, then, the tool works on the Java bytecode. Moreover, it’s reasonable

to think that a practitioner would like to emulate more bugs related to third-party

code than others. The thesis also includes some utilities, designed for a better in-

strumentation of the Java bytecode, that have been used for the implementation of

the tool.

A brief history of the most common injection tools introduces the approach

used in this work in chapter 1; the design and some implementation notes for the

Java Fault Injection prototype are in chapters 2 and 3; chapter 4 contains some

experiments on a demo project from the java enterprise edition tutorial with the

aim of showing some capabilities of the tools. Finally, there is a little conclusion

that includes some future developments.

2

Chapter 1

Software Fault Injection

1.1 Basic Concepts

According to Avizienis et al. [2], the dependability of a system is the ability to avoid

service failures that are more frequent and severe than is acceptable. This definition

is based on the concepts of service and failure, so on the following definitions:

service delivered by a system, is its behaviour as it is perceived by its users, which

could also be other systems.

behaviour is what the system does to implement its functions and it is described

by a sequence of states;

total state is the set of the following states: computation, communication, stored

information, interconnection, and physical condition.

Thus, once dependability is defined, threats to dependability can be defined as well:

failure is the event that occurs when the delivered service deviates from correct

service;

error is the part of the total state of the system that may lead to its subsequent

failure (error could be sees as a deviation from the correct state);

fault is the adjudged or hypothesized cause of an error.

3

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Figure 1.1 explains how error propagates among components, while Figure 1.2 show

the fault-error-failure chain from a generic point of view.

Figure 1.1: Detailed View of Error Propagation

Figure 1.2: The fundamental chain of dependability threats

Figure 1.3 shows the classification of faults according to eight basic viewpoints,

i.e. phase of creation (development or operational), system boundaries (internal

or external), phenomenological cause (human-made or natural), dimension (hard-

ware or software), objective (malicious or non-malicious), intent (deliberate or non-

deliberate), capability (accidental or incompetence) and persistence (persistent or

transient). Of particular interest is the difference between internal and external

fault. The first originates inside the system boundary, the latter originates outside

and propagates errors into the system by interaction or interference. Moreover, a

permanent fault is the one of which presence is assumed to be continuous in time

and a transient fault has a presence bounded in time.

This thesis considers faults of software components that belong to a system, and

they are all covered by the proposed tool. These failures can be caused by:

4

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

• bugs inside the code of a particular component, sometimes called software

defects (these are persistent faults activated by particular sequence of inputs

and use condition of the component, 1-4 in Figure 1.3);

• external faults generated outside the component and that induce the failure

of the component (they include the unavailability or exhaustion of physical

resources such as memory, connectivity etc., or they include delays or interac-

tion errors with other components such as operating system, database, remote

system etc.. They typically are transient, 24-31 in Figure 1.3).

Figura 1.3: Faults Classification

Software faults are unavoidable. No one can prove the correctness of a program1

and software engineers usually design some mechanisms for the fault tolerance, such

as assertions, redundant logics and rollbacks. Those Fault Tolerant Algorithms and

Mechanisms (FTAM) give the confidence that the system will be able to deliver

a proper service and can be both evaluated and improved by a campaign of fault
1Dijkstra says test can’t guarantee the absence of errors, but it can only show their presence.

The error-free software does not exist.

5

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

injections experiments. The software fault injection, thus, reveals and improve the

ability of the software to handle faults.

1.2 State of Art

As long as software becomes more complex, the number and the complexity of soft-

ware functionalities also tend to increase validating the hypothesis that software

faults are the most frequent source of system outages. Fault injection is a practical

approach for achieving the confidence that software cannot cause serious service

failures [2]. Fault injection approaches work in this direction, deliberately intro-

ducing faults in a system in order to figure out its behaviour in presence of faults

and, thus, to measure and to improve the efficiency of error detection and recovery

mechanisms. With the growing complexity, software applications are getting more

prone to faults, many of which are extremely hard to reproduce in a traditional

testing environment. Thus, the focus of researchers shifted towards the assessment

of fault-tolerant systems with respect to software faults. In his thesis, Natella [3]

studied and classified all the research works in this field: many techniques and tools

have been developed in more than 20 years. Summarizing, three classes can be

identified.

Data Error Injection This kind of injection corrupts the memory in a similar

way to hardware fault, aiming to reflect the effects of software faults. Some

tools of this class are: FIAT[4], FERRARI[5], DOCTOR[6], Xception[7].

Interface Error Injection It is a technique that corrupts the input values pro-

vided to a target software component, or the output values that the target

provides. It aims to emulate the effects produced by faults outside the target.

Some tools of this class are: Fuzz[8], RIDDLE[9], Ballista[10], MAFALDA[11].

Code Changes Injection The last category of injection tools corrupts directly

the program code, changing its semantic. The purpose is to emulate actual

6

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

software faults in the target component of the system. Some tools of this class

are: FAUST[12], FINE[13], DEFINE[14], G-SWFIT[15].

1.3 Objective of the Thesis

The goal of this work is to build a fault injector for Java programs. Java is the

foundation for virtually every type of networked application and is the global stan-

dard for developing and delivering mobile applications, games, Web-based content,

and enterprise software. All of them in several environments, with more than 3

billion devices running Java. It’s then obvious how Java software fault injection

could be useful, giving the opportunity to improve the dependabily of actual sy-

stems. This tool can inject various types of faults into a java software and assist

software engineers to analyse the impact of such faults on the runtime behaviour of

the application.

The tool gets as input the code of a Java software component (it could be stored

as JAR, WAR or EAR, i.e. the archive files for all kind of Java software). The tool

analyses the input and extract all the information needed to profile the application

and then create a copy of the archive file with a fault inside. As mentioned before,

two kind of fault can be emulated: internal and external. Internal faults represent

the residual software faults, those that eluded all software test with the unawareness

of where they are, when they will reveal, what could be the consequences. On the

other hand, external faults are caused by the failure of an external system. Service

failure of a system causes a permanent or transient external fault for the other

system(s) that receive service from the given system.

The injection of code changes for emulating the effects of real software faults is

based on the empirical observation that code changes produce errors and failures

that are similar to the ones produced by real software faults [16, 17, 18]. This is

the reason why this approach has been chosen for the tool.

The faults are injected at the bytecode level. The Java bytecode is the binary

executable on a Java Virtual Machine (JVM) [19]. It is not necessary to have source

7

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

code in order to inject faults and, thus, they can be injected in third party library

or Component Off The Shelf (COTS). The program translated in Java bytecode

is enclosed in one or more .class files, each one that contains instruction codes as

well as all the necessary information for the execution of the same in the form of

constants’ tables. The tool works with the proper parts of this file in order to inject

the code changes. These code changes are consistent with the Java language such

as it worked with the source code.

What is actually injected is called fault load, i.e. rules and operators for the

simulation of the software faults. The fault load is split into two parts according

to what to emulate. Software defects are emulated reproducing those kinds of error

that programmers usually make, taking this information from some works such as

Duraes and Madeira [15] and Basso et al. [20]. The external faults, instead, are

reproduced injecting, with the technique of dead code2 to modify the persistence,

errors and exceptions of the same kind of those the code could actually throws.

The next sub-sections explain in details these two complementary parts of the

fault load.

1.3.1 Injection of Software Defects

Residual software faults are faults that eluded all the software tests, with the una-

wareness of where they are, when they will reveal, what could be the consequences.

In order to emulate them, they should be first classified. Duraes and Madeira [15]

suggested an extension of the Orthogonal Defect Classification (ODC) 3 for analy-

sing the faults from the point of view of the program context in which they occurs

and for relating them with programming language constructs to be changed for

fault injection purposes. They also made a field data study on several open source

C programs, obtaining that only few kinds of fault are actually representative of
2the injection of dead code consists in surrounding the target code with an if-then-else construct;

the program will execute faulty code when instructed to do so (the "if" branch), according to a
condition specified by the tester; otherwise (the "else" branch), the faulty code will behave as
"dead code", and the software component will act normally.

3Orthogonal Defect Classification (ODC) turns semantic information in the software defect
stream into a measurement on the process. The ideas were developed in the late ’80s and early
’90s at IBM Research by Ram Chillarege(author?) [21].

8

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

residual faults. The most common defect types can be seen in Figure 1.4 and each

of these matches with an original ODC class, i.e. Assignment, Checking, Interface,

Timing&Serialization, Algorithm, Function. A further consideration is that there

are no residual faults belonging to the timing&serialization category. Thus they

proposed a new software fault injection technique, G-SWFIT, based on emulation

operators derived from the field study. This technique consists of finding key pro-

gramming structures at the machine code-level where high-level software faults can

be emulated.

Figura 1.4: Fault Coverage of the Representive Faults Types

To use these results about java programs, it should be noted that there may be

differences with the C language from the point of view of residual errors. Basso et

al. [20] performed in their work a similar field study on Java open source programs.

Despite some different frequencies, the mistakes made by programmers are common

to both C and Java. New fault types were found due to the Java language specific

characteristics, but they together account for only 7%, and less than 1% individually,

of the total faults.

Thanks to all this information, the software defect injection, used in this work,

is based on the G-SWFIT of Duraes and Madeira designing new mutation operators

in order to bridge the gap between the procedural paradigm of C programming and

the object-oriented paradigm of Java.

9

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

1.3.2 Injection of Exceptions

Java, as most of the modern languages, support explicitly the mechanism known

as exception handling. When a semantic constraint is violated or when some

exceptional error condition occurs, an exception is thrown. This causes a local

transfer of control from the point where the exception occurred to a point, defined

by the programmer, where the exception is caught. If not caught, or wrongly

handled, the exception makes the system fail. System usually communicates with

the external systems through APIs. When external systems fail, the external faults

manifest them as an exception in the API calls. External software faults can, thus,

be emulated triggering the exception at the code-level where the related API method

is called.

Exceptions in Java are classified in:

• Checked Exception: these are exceptional conditions that a well-written ap-

plication should anticipate and recover from. Checked exceptions are subject

to the Catch or Specify Requirement, i.e. the programmer has no choice but to

handle them during the development. Examples are: java.io.FileNotFoundException,

java.net.URISyntaxException, java.awt.print.PrinterAbortException and all the

subclasses of java.lang.Exception but java.lang.RunTimeException.

• Error: these are exceptional conditions that are external to the applica-

tion, and that the application usually cannot anticipate or recover from.

For example, suppose that an application successfully opens a file for in-

put, but is unable to read the file because of a hardware or system malfunc-

tion. The unsuccessful read will throw java.io.IOError. Other examples are

java.lang.VirtualMachineError and all the subclasses of java.lang.Error.

• Runtime Exception: these are exceptional conditions that are internal to

the application, and that the application usually cannot anticipate or re-

cover from. These usually indicate programming bugs, such as logic er-

rors or improper use of an API. For example, consider an application that

passes a file name to the constructor for FileReader. If a logic error cau-

10

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

ses a null to be passed to the constructor, the constructor will throw ja-

va.lang.NullPointerException. Other examples are BufferOverflowException,

NoSuchElementException, ConcurrentModificationException and all the sub-

classes of java.lang.RunTimeExcetion.

Checked Exceptions are defined in the API documentation or could be found in-

specting the java class file and their hierarchy of parents. Unchecked exceptions,

instead, should follow different criteria in order to decide properly which kind of in-

struction could throw it and which not, e.g. an IOError will only show up when we

are doing some kind of IO operation. These considerations show how many possibi-

lities there are and how many external faults can be emulated, but they also force

to couple all the external methods of an application with the specific exceptions

they can throw.

11

Chapter 2

Tool Design

2.1 Overview Architecture

The injection tool consists of three different projects designed according an object-

oriented design style. An overview architecture is figure 2.1.

The smaller projects are related to the activation mechanism for the injected

fault: JFIRemoteClient and JFIRemoteController.

The JFIPrototype project is the main project and cares about the injection

process. The designed components of the tools are the following:

Façade allows to use all the other components’ functionalities organizing the con-

trol flow and providing a simplified interface, in a similar way the façade

design pattern provides a higher level view on the whole system;

Injection is interested in the injection mechanism, consisting of all the operators

of the fault types;

JarManagement manages the archive files, such as .jar, .war and .ear files, to

give the other components the possibility to work directly with .class files;

Profiling uses the technique from [22] to improve the representativeness and the

efficiency of the injections selecting a smaller set of locations from the target

set.

12

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Util contains all the utility classes used to manipulate in a simpler way the bytecode

inside a .class file.

All these components, and the remote activation projects, are explained in detail

in the following subsections.

Figure 2.1: Overview Architecture

2.1.1 Façade Package

The façade package is the entry point of the tool and starts the graphic user in-

terface. It is possible to run the tool without the GUI providing some arguments

to the tool. So we have two controllers, as shown in figure 2.2, that are instanced

according to the arguments of the main. They create the instances of classes of the

other packages and use them to execute the work flow of the tool. The GuiEle-

ments contains a simple class Visualizer that cares about the instantiation of the

GUI, represented by the other classes of the same sub-package, linking it to the

Controller.

The GUI allows the user to:

1. load an archive file, which should be a .jar/.war file or a .ear file. This

distinction is made because the .jar/.war files does not contain any other

archive files, while a .ear file can consist of several .jar and .war files;

13

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

2. have a look at the methods that are candidates to contain a fault-prone lo-

cation or are external methods, i.e. a method which implementation is not

present in the target project (more details later, in subsection 2.1.4);

3. select some of the shown methods and the trigger mode between remote,

forcing to use later the remote controller, or limited, the synchronous trigger

mode as explained before but without using the remote controller, or always,

to inject the fault already activated without a later possibility to deactivate

it;

4. inject all the methods, or only the selected methods, with the faults that fit

in them according to the fault load saving a faulty copy of the input file in

the output folder;

5. select the output folder.

Figure 2.2: Façade Package Design

2.1.2 Injection Package

The process that really cares about getting a .class file, looks for matching location

and applies the related change, is realized by the injection package. The Injector

class is the one that is invoked by the controller. It has a .class file and a list of

14

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

methods as inputs, and a list of classes injected with faults as output. According

with the type of list the injector gets, it can use the software fault operators or the

exception operators. They all extend the AbstractOperator class that enclose the

common operation, leaving to the extended classes to implement the methods:

searchPattern it looks for those locations that match with the specification of the

operator;

changeMethod it deletes, substitutes or adds method instruction, always accor-

ding to the operator and the locations found by the search;

getName it returns a string with the name of the specific operator.

When the injector gets a methods list, it invokes sequentially all the software fault

operators. If the list consists of external methods, the injector can already extract

which exception should be injected and where (more details in subsections 2.1.4 and

2.1.5). The location corresponds with invoke instruction for the external method

and the code to change consists of adding few lines. These lines introduce some

dead code, as follows, where invokeInstruction is the original line of code:

1 i f (JFI . RemoteClient . ErrorActivator . isActivated ()) {

2 throw new Error () ;

3 } e l s e {

4 invoke () ;

5 }

Line 1 shows the point where the injected .class files from the RemoteClient

project are used, forcing to switch the control to the error activator. The error ac-

tivator will return true or false according to the activation of the fault. If the fault

is activated, the application will throw an exception, as in line 2; if not, the appli-

cation behaves normally because the only line that affects the application is line 4.

This brief example can also show that every exception operator behaves in the same

way, it is only needed to specify the exception. Thus, all the exception operators

extends the ErrorOperator class that extends the AbstractOperator, implementing

the abstract methods and introducing a new one (specifyException).

15

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

The package design is in figure 2.3 and the software fault operators detailed

design is in section 2.3 (since the software fault operator are designed for java

application, they are called Java Operator or JO).

Figure 2.3: Injection Package Design

2.1.3 JarManagement Package

The JarManagement package is responsible of managing the files the user provides

or receives as results from the tool. It only consists of two class, as shown in figure

2.4: the JarManager and the EarManager. The last, because a .ear file contains

.jar and .war files, can create and use more JarManagers. Both can be invoked

externally and they have this properties:

loadXar loads the file in the tool;

getXarName returns the name of the file;

getKlassList opens the archive file and scan it returning all the .class files as a

list;

saveFaultyXar creates a new archive file equal to the original with the only dif-

ference of the injected fault and, when necessary, the addiction of the .class

files of the RemoteClient project;

getFaultyJar returns the faulty jar as a file (invoked by the saveFaultyEar method

of the EarManager).

16

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Figure 2.4: JarManagement Package Design

2.1.4 Profiling Package

Figure 2.5 shows the Profiling package. As stated before, there is a technique in

(author?) [22] that improves:

representativeness is the ability of the fault load to represent the real faults that

the system will experience during operation and it can be achieved by defining

a realistic fault model;

efficiency refers to the numbers of experiment required to achieve relevant and

useful results, considering that a low efficiency occurs when a huge number of

experiment is needed in order to discover FTAM deficiencies.

The technique is based on classification algorithms that marks among a list of

locations (in this work the methods) where the injection of fault is more representa-

tive, also reducing overhead while maintaining high efficiency. The simplest of the

classification algorithms is the K-Mean Clustering and it uses two software metrics:

Lines Of Code the number of executable lines of code;

Fan Out the count of unique functions that are called by a given function, either

directly, or ultimately, via other functions.

After the clustering, the cluster with the lower average Fan Out will contain the

fault-prone methods. This technique is implemented by Profiler class with the aid

of the class Measurer, which calculates the software metrics of all the methods in

the target application. Then it uses the sub-package clustering to perform the

classification and saves the fault prone methods list.

Another task of the Profiler is to scan the application for external method

invocations and organize an external methods list. When it finds one, it try to

17

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

create an ExternalMethodItem. The constructor of this class first checks if the

external method is present in the InclinationTable (so it can be injected with an

exception, details in subsection2.1.5) and then it will keep trace of all the invocation

occurrences of the external method.

Figure 2.5: Profiling Package Design

2.1.5 Util Package

The Util package is represented by figure 2.6 and all its classes are used by the

Injection package. These classes are utilities, they abstract some concepts to make

the understanding and the manipulation of the bytecode easier. These concepts are

peculiarity and they are not included in any third-party library, so they have to be

included in the design of the tool.

The only exception is the inclination table. This is a static table that encodes

some information useful for the exception injection. Every entry of the table consists

of:

method name of an external method in dotted notation

(e.g. javax.persistence.Query.getResultList);

inclination an integer that encodes the particular exception that the method can

throw and for which exception it exists in the fault load a related operator.

This table has to be populated manually and, most likely, according to a previous

analysis of the target application and to the exceptional situation.

The detailed design of the other utilities is placed in the next section.

18

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Figure 2.6: Util Package Design

2.1.6 Remote Activator

As mentioned before, both permanent and transient fault can be emulated with

the tool. The transient fault injection needs the remote activator, designed for the

activation of an injected fault with a remote controller, external to the target. It

consists of two projects.

1. The JFIRemoteClient contains the classes that will be included into the

faulty version of the application and it activates or deactivates the fault

according to the commands acquired by the remote controller;

2. The JFIRemoteController is an external application with a graphical user

interface and the ability to communicate with the application.

The two projects reproduce the client-server paradigm, where the first acts as a

client and the second as a server. Thus, JFIRemoteClient contacts first JFIRemo-

teController that answers according to the user input. The GUI of the controller

gives the users the possibility to adopt two different fault activation modes:

Event-Triggered the user can choose how many times the target code should be

executed before the fault is activated;

User-Triggered the user has the possibility to activate or deactivate the fault at

any time using a switch.

19

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

The communication between these two first components is based on messages (in

figure 2.1 this is represented by the dotted arrow), because they will run on different

processes and should be considered as a distributed system. Instead, the relation-

ship between the JFIRemoteClient and the JFIPrototype indicates that the latter

uses the .class files produced by the compilation of the first and it will injects them

into the target.

2.2 Utilities

2.2.1 Concepts and Definitions

Bytecode Instruction Every bytecode instruction works on a operand stack, al-

located only for the method that contains it. Every bytecode instruction

pushes and pops a compile-time well-defined number of values into and from

the stack. Every Java instruction is translated into more than one bytecode

instructions. They are sometimes called opcodes.

Basic Block Portion of the code within a program. A basic block has only one

entry point and it has only one exit point. Every time the first instruction

is executed, the rest of the instructions within the basic block are necessarily

executed, in order, exactly once.

Functional Block A functional block is a set of consecutive bytecode instruc-

tions, within a basic block, that accomplishes the function required by a Java

instruction. A Java instruction is translated into a functional block.

Instruction Tree An instruction tree is a data structure that abstract the concept

of functional block. It is not a tree, but it is a direct acyclic graph (DAG)

G = (V, E), where:

• V is the set of instruction vertices, matching the single bytecode instruc-

tion;

• E is the set of the edges between the vertices.

20

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

There is an edge (v, w) ∈ E if the instruction v pushes a value into the stack

that the instruction w pops. We say that v is a sponsor for w or that w is

sponsored by v. Further, w accepts a sponsor offer from v or v accomplish a

sponsor request from w.

2.2.2 Boundary Table

The boundary table actualizes the abstraction of the basic blocks within a method.

The entries of this table consists of:

key the bytecode instruction number, i.e. the position of the instruction in the

method’s bytecode;

value a boolean value that indicates if the bytecode instruction delineates the

beginning or the end of a basic block.

In order to create the boundary table, the initialization algorithm scans the instruc-

tion list of the method and it adds:

• with value false the method’s first instruction;

• with value true every jump-kind instruction, with value false the subsequent,

with value false its target and with value true the previous of its target;

• with value true the method’s last instruction.

Thus, once the boundary table is initialized, given an instruction of the method, it

is possible to obtain the positions of the first and last instructions (boundaries) of

the basic block where the instruction belongs to.

2.2.3 Loop Table

The loop table is a utility that tracks all the loops inside a method. A loop can be

either a for construct or a while/do-while construct. These constructs are translated

in Java Bytecode with IfInstruction opcodes that have a negative offset as argument.

The entry of this table consists of:

21

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

key the bytecode instruction number (i.e., the position) of the first instruction that

starts a loop;

value the bytecode instruction number (i.e., the position) of the last instruction

that ends the same loop.

Thus, once the boundary table is initialized, given an instruction of the method, it

is possible to know if that instruction belongs to a loop or not.

2.2.4 Informer

The Informer is a utility that gives information about what a bytecode instruction

does. Actually, given a bytecode instruction, it can return both the number of

values that instruction pushes and pops.

The only exceptions are the opcodes with the mnemonics DUP2, DUP2_X1

and DUP_X2 that care about words not values, i.e. the number of values pushed

or popped depends if they represent integer, long or doubles and this information

are available only with a further analysis of the bytecode instruction list.

2.2.5 Instruction Tree

During the injection process, the tool locates the bytecode instruction that matches

with the search pattern of an operator. Most of the operators work directly on

those bytecode instructions, while others work on the corresponding higher level

instruction. A Java instruction is usually translated in more than one bytecode

instruction, each of them for a particular atomic action of the high level statement.

Thus, an operator designed to affect a Java instruction should be able to merge

the bytecode instructions of the same functional block, i.e. the translated Java

instruction in bytecode instructions. In order to enrich the tool with this ability,

the following property has been considered:

P1. When executing, the functional block starts with the operand

stack in a certain state and ends with the operand stack in the same

state.

22

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

The operand stack is a LIFO stack used to store arguments and return values of

many of the virtual machine instructions1. A Java instruction, once executed, never

leaves the operand stack with not consumed value and never expect some value in

the operand stack from previous operations. It loads the operands onto the stack

from the local variables or the constant pool and it saves its results (if any) into

local variables or simply discard them. Thus, the functional block, that represents

the whole Java instruction, acts the same. This is a run-time property but it holds

also for static analysis with some considerations about the jump instructions. The

IfInstructions are always located at the end of a functional blocks and create no

problem at all because it consumes all the pending values on the operand stack. The

instruction GOTO, instead, alters the control flow independently and can break the

hypothesis of contiguous blocks in a static context. A possible workaround is to

consider as next instruction of the GOTO the target of the same, also because the

next instruction certainly belongs to another functional block. A generic example

of functional block and its property is given in Figure 2.7.

Figure 2.7: Example of Functional Block and Its Property

The instruction tree abstracts the idea of functional block with a graph and

the swinging algorithm uses the property P1 to build the instruction tree from
1The Java virtual machine works on frames. A frame is used to store data and partial results.

It is created each time a method is invoked and destroyed when its method invocation completes.
Frames are allocated from the Java Virtual Machine stack of the thread creating the frame. Each
frame has its own array of local variables, its own operand stack, and a reference to the run-time
constant pool of the class of the current method. The Java Virtual Machine supplies instructions
to load constants or values from local variables or fields onto the operand stack. Other Java
Virtual Machine instructions take operands from the operand stack, operate on them, and push
the result back onto the operand stack. The operand stack is also used to prepare parameters to
be passed to methods and to receive method results. [19]

23

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

any of its bytecode instruction. This algorithm consists of three section:

Initialization it’s executed once and it is the entry point of the algorithm. It:

1. creates two LIFO structures, one for the pending sponsor requests (PSR)

and one for the pending sponsor offers (PSO);

2. considers instruction i;

3. adds i to the graph;

4. adds i to PSR as many times as it requires a sponsor and to PSO as

many times as its sponsors’ offers;

5. if PSR is not empty, go to backward step; else if PSO is not empty, go

to Backward Step;

Backward Step

1. considers i as the first (lowest key) instruction among the instructions

already considered;

2. adds the previous instruction (i.prev) to the graph;

3. for each sponsor offer of i.prev until PSR is not empty, creates an edge

(i.prev, PSR.pop());

4. for each sponsor offer left, adds i.prev to PSO;

5. for each sponsor request, adds i.prev to PSR;

6. considers i.prev as i;

7. if PSR is not empty, goes to Backward Step.2;

8. if PSO is not empty, goes to Forward Step;

Forward Step

1. considers i as the last (highest key) instruction among the instructions

already considered;

2. adds the next instruction (i.next) to the graph;

24

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

3. for each sponsor request of i.next until PSO is not empty, creates an edge

(i.next, PSO.pop());

4. for each sponsor request left, adds i.next to PSR;

5. for each sponsor offer, adds i.next to PSO;

6. considers i.next as i;

7. if PSO is not empty, goes to Forward Step.2;

8. if PSR is not empty, goes to Backward Step;

An example of how the algorithm works is given in Appendix A .

The correctness of the algorithm is given by the property P1. The swinging

algorithm’s steps aim to merge instructions until there are no more pending requests

and offers, thus that the operand stack before those instructions is in a state, all the

pushed values are consumed by the same instructions and after the last instruction

the operand stack is in the same state. The termination of the algorithm depends

on the simple consideration that the analysed code derive from syntactically and

semantically verified code. There will never be instructions that require the presence

of certain values on the stack without these have actually been previously entered,

or vice versa. Thus the algorithm converges but, with this simplified version, GOTO

instructions are dangerous (see above) and makes the algorithm not to terminate.

Adding a check on the instruction under consideration will stop the algorithm,

returning an error of fail while guaranteeing termination.

This algorithm should not be considered as a data flow analysis algorithm be-

cause it works with the number of values on the operand stack. While, the data flow

analysis works with the values of all the variables in the program and its framework

is completely different. For further information, see chapter 9 in [23].

2.3 Software Fault Operators

Among the most common software defects as in Figure 1.4, we detected nine diffe-

rent faults from different ODC classes and designed the related operators. These

25

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

operators are:

Java Operator-Missing Method Call (JoMmc) to remove a method call from

its context;

Java Operator-Missing If Around Statement (JoMias) to remove an if con-

struct surrounding a set of statements;

Java Operator-Missing If Plus Statement (JoMips) to remove an if construct

and the surrounded set of statement;

Java Operator-Missing variable Initialization with a Value (JoMiv) to re-

produce the omission of the initialization (first assignment) of a given local

variable with a constant value;

Java Operator-Missing variable Assignment with a Value (JoMav) to repro-

duce the omission of the assignment (not the first) of a given local variable

with a constant value;

Java Operator-Missing Localized Part of an Algorithm (JoMlpa) to repro-

duce the omission of a small localized part of the algorithm;

Java Operator-Missing Logical Sub-expression in a Branch (JoMlsb) to emu-

late the omission of part of a logical expression used in a branch condition;

Java Operator-Wrong Arithmetic Expression in a method’s Parameter (JoWaep)

to emulate a wrong arithmetic expression used as parameter in a method call;

Java Operator-Wrong Value Assigned to a Variable (JoWvav) to emulate a

wrong assignment of a given loval variable with a different constant value.

Each operator is described according to the rules that define the search pattern and

the code change to apply to the locations identified by the search pattern. The

search is bound by constraints that help to avoid locations where the code change

would not emulate a realistic fault. An example is given in the next subsection.

26

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

2.3.1 Java Operator - Missing Method Call Design

This injection hypothesizes the case in which a programmer forgets to insert a call

to a method. This could happen when the program is very large and complex, and

the programmer must take into account several aspects.

The search pattern consists of all those opcodes for the method invocations,

such as INVOKEINTERFACE, INVOKESPECIAL, INVOKESTATIC and INVO-

KEVIRTUAL.

The code change to apply is the deletion of all the bytecode instruction related

to the method invocation, including the parameters preparation.

The constrains are:

C1 value of the function must not be used;

C2 call must not be the only statement in the block;

C3 call must not be referred to a constructor.

The algorithm used by the operator consists of the following steps:

1. Consider each InvokeInstruction (INVOKEINTERFACE, INVOKESPECIAL,

INVOKESTATIC and INVOKEVIRTUAL), let’s say ii;

2. Check constrain C1:

(a) get the return type of the invoked method. If void, go to 3.;

(b) get the next instruction of ii, until the current instruction ii! = NOP ;

(c) if ii== POP , go to 3.;

(d) if iiinstanceof StoreInstruction, search after ii for a LoadInstruction on

the same variable. If there is none, go to 3.;

(e) in any other case, C1 is violated, consider the next InvokeInstruction

and go to 2.;

3. Check constrain C2:

27

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

(a) calculate the BoundaryTable bt, if not already calculated for the method

under consideration;

(b) calculate the InstructionTree it from ii;

(c) if the first instruction of the it is different from the first instruction of the

bt OR if the last instruction of the it is different from the last instruction

of the bt, go to 4.;

(d) in any other case, C2 is violated, consider the next InvokeInstruction

and go to 2.;

4. Check constrain C3:

(a) if the name of the invoked method is <init> (the name given to the

constructor in the bytecode), C3 is violated, consider the next InvokeIn-

struction and go to 2.;

5. Delete the instructions of the it;

6. Consider the next InvokeInstruction and go to 2..

28

Chapter 3

Tool Implementation

3.1 Development Environment

The tool is completely implemented with the Java language for the execution en-

vironment JavaSE-1.7. The development environment is Eclipse Java EE IDE for

Web Developers, version: Juno Service Release 2.

In Eclipse, three project have been developed according to the design: JFIPro-

totype, JFIRemoteClient and JFIRemoteController.

The injection package of the JFIPrototype project uses a third-party library

called BCEL [24]. The used version is the 5.2. This library parses the Bytecode and

give the possibility to instantiate objects that abstract basic concepts as instruction,

target etc..

All the other abstractions and algorithms are translated in high level language

as classes organized in packages.

Another package has been added to track the control flow of the tool: the logger

package. It implements a logger, with both a text formatter and an xml formatter,

which logs all the useful information assigning an appropriate level.

29

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

3.2 Java Operators

The java operators’ implementation follow the injection package design. The Ab-

stractOperator class is extended by all the other operators that inherit:

public void setProfList(List<?> list) this method set the profiler list for this

operator. Only the methods contained in the list will be considered for

injection. If the list is null, all the methods of the class will be considered.

public List<FaultyKlassItem> operate(JavaClass klass) this method is the

entry point of every operator. It gets as input a BCEL’s JavaClass object and

returns a list of FaultyClassItems. This method:

1. creates an empty list;

2. gets the methods and the constant pool1 of the class;

3. scans all the methods in the class and considers only those one contained

in the profiler list (if any);

4. for every methods, invokes the method searchPattern for that method;

5. for every pattern found, invokes the method changeCode and adds to the

list its result;

6. returns the list;

protected FaultyKlassItem changeCode(InstructionHandle ih) this method

creates and returns the item that represents the faulty class injected by the

operator’s software defect. It takes as input an InstructionHandle, i.e. an ob-

ject from the BCEL library that manages a bytecode instruction in the class

file. This method:

1. creates a JavaClass object as a deep copy of the original class file;
1A constant pool is an ordered set of constants present in the class file and used by the type,

including literals (string, integer, and floating point constants) and symbolic references to types,
fields, and methods.

30

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

2. looks for the method to change in the new JavaClass object and gets the

method generator2 of that method;

3. invokes the method changeMethod passing as input the instruction hand-

ler and the method generator and returning the modifies (injected) me-

thod;

4. sets the new constant pool for the modified JavaClass;

5. creates and returns a FaultyClassItem for the modified JavaClass;

protected InstructionHandle getNewIH(MethodGen mg, int pos) This me-

thod bypasses a problem with the instruction handler. When there is a deep

copy of a JavaClass object the instruction handler of the original object can-

not be linked directly to the new object. This method uses the position of the

instruction in order to find the new instruction handler for the deep copy of

the JavaClass object.

The abstract methods are implemented according to the single operator design.

The following subsection give an example.

3.2.1 Java Operator - Missing Method Call Implementation

The JO-MMC provides an implementation, for the three abstract methods of the

superclass AbstractOperator, that follows the design in Subsection 2.3.1. Moreover

it has also an hash table used by these methods to keep a cache for the boundary

tables. This avoids long time waiting for the calculation of a boundary table of an

already considered method.

The method searchPattern instantiates a particular class of the BCEL libra-

ry called InstructionFinder. This object is a tool to search for given instruc-

tions patterns, in this case for all the invoke instructions. Code patterns found

are checked using an additional user-defined constraint object whether they really
2The method generator is a BCEL template class for building up a method. This is done by

defining exception handlers, adding thrown exceptions, local variables and attributes, whereas the
‘LocalVariableTable’ and ‘LineNumberTable’ attributes will be set automatically for the code

31

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

match the needed criterion. The CodeConstrain object’s method checkCode checks

sequentially the three operator constrains implemented with as many predicates.

3.3 Remote Fault Activator

The remote communication of the JFIRemoteClient and JFIRemoteController is

realized thanks to the RMI mechanisms provided by the Java language. It abstracts

the communication interface to the level of a method call. Instead of working

directly with sockets, the programmer has the illusion of using a local object, when

in fact the arguments of the call are packaged up and shipped off to the remote

target of the call.

The messages between the components are defined by the RemoteControllerIn-

terface, which consists of:

public int getTriggerMode() gets an integer which encodes the trigger mode

chosen by the remote controller and returns :

• 0 if event-triggered, i.e. when the fault is activated after a chosen number

of the instruction executions;

• 1 if user-triggered, i.e. when the fault is activated according to the real-

time state of the remote controller;

public int getLimit() works only if the trigger mode is event-triggered and re-

turns the number of times the instruction has to run before activating the

fault;

public int isApproved() works only if the trigger mode is user-triggered and

returns:

• true if the fault should be activated;

• false if it should be deactivated;

32

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

public int connect() implements a handshaking between the server and the client

and has a string as parameter for the name of the software where is located

the activator.

JFIRemoteController implements the RemoteControllerInterface and creates and

exports a registry instance on the local host that accepts requests on the port 30000.

Thus load on the registry an instance of the RemoteController, which change its

variables’ value according to the user interface. JFIRemoteClient, instead, has

a class singleton ErrorActivator with a private constructor and a static method

isActivated. The target program is injected with a transient fault and remote trigger

mode. When it executes the method isActivated (see Subsection2.1.2), the remote

methods are queried. Moreover, isActivated calls the constructor, if not yet invoked

once, and establishes a connection with the remote controller importing the remote

object from the registry. The method isActivated returns:

true if the conditions to activate the fault are verified, according to the remote

commands;

false otherwise.

33

Chapter 4

Case Study: Duke’s Forest

4.1 Overview of the Case Study

This chapter shows the tool in the context of a real project, how it is used and

which results and feedback it can return to improve the robustness and integrity

of data. In order to understand the capability of the tool, it is first necessary that

the case study is a project representative of the type of system which the tool has

been developed for. It’s also important that the application is well known so that

the experiments are immediately clear. From the very beginning, Java always gives

practical examples in its tutorial useful to show the language possibilities thanks

to small but complete applications (e.g., the well-known petstore application). The

last version of the java enterprise edition, the 7th, has a tutorial as well and the

Duke’s Forest case study example [25] is used here for evaluating the Java Fault

Injection tool.

Duke’s Forest is a simple e-commerce application that consists of three sub-

systems, as shown in Figure 4.1:

Duke’s Store: a web application that provides a product catalog, customer self-

registration, and a shopping cart. It also has an administration interface for

product, category and user management;

Duke’s Shipment: a web application that provides an interface for order shipment

34

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

management;

Duke’s Payment: a web service application that has a RESTful web service for

order payment.

Figure 4.1: Architecture of the Duke’s Forest Application

Duke’s Store, a web application, is the core application of Duke’s Forest. It is

responsible for the main store interface for customers as well as the administra-

tion interface. The main interface of Duke’s Store allows the user to perform the

following tasks:

• Browsing the product catalog;

• Signing up as a new customer;

• Adding products to the shopping cart;

• Checking out;

35

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

• Viewing order status.

The administration interface of Duke’s Store allows administrators to perform the

following tasks:

• Product maintenance (create, edit, update, delete);

• Category maintenance (create, edit, update, delete);

• Customer maintenance (create, edit, update, delete);

• Group maintenance (create, edit, update, delete).

Duke’s Shipment is a web application with a login page, a main Facelets page, and

some other objects. This application, which is accessible only to administrators,

consumes orders from a JMS queue and calls the RESTful web service exposed

by Duke’s Store to update the order status. The main page of Duke’s Shipment

shows a list of orders pending shipping approval and a list of shipped orders. The

administrator can approve or deny orders for shipping. If approved, the order is

shipped, and it appears under the Shipped heading. If denied, the order disappears

from the page, and on the customer’s Orders list it appears as cancelled.

The dukes-payment project is a web project that holds a simple Payment web

service. Since this is an example application, it does not obtain any real credit

information or even customer status to validate the payment. For now, the only

rule imposed by the payment system is to deny all orders above $1,000. This

application illustrates a common scenario where a third-party payment service is

used to validate credit cards or bank payments.

4.2 Experimental Design

We injected the components with faults according to the nature of the component

itself. The core application, duke’s store, has been injected with exceptions in order

to emulate a database connection loss; the duke’s payment and shipments projects

have been injected with software defects because they represent third-party or minor

36

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

applications not adequately tested. The duke’s payment application is a really small

application, so the profiling filter was de-activated during the injection process to

have more faults for the experiments.

To deploy and run the application on a server, we used a virtual machine with

Ubuntu 13.11 on Oracle VM VirtualBox 4.2.18. On the virtual machine

host-only networking is used as networking mode, i.e. the virtual machine can talk

to the host as if they were connected through a physical Ethernet switch. After the

installation of such machine, projects were downloaded and deployed, server was

started, all according to the tutorial [25]. Because of the nature of the bytecode

instrumentation, the JVM in the GlassFish Server should be executed with the

SplitVerifier option.

To evaluate the behaviour of the duke’s forest, tests have been written to cover

most of the possible use cases. The test environment used is Selenium IDE 4.1.0,

a plug-in of the browser Mozilla Firefox 25.0.1 [26]. Selenium allows to write in

a simple way a test case, by indicating the buttons to push and the characters to

type inside the browser. Every test case has a mnemonic name and contains several

assert statements in order to check the integrity of the execution in every point.

The test cases are:

RobertBuys User Robert logs in /dukes-store/, browses through the products and

buys for a total of $495. He checks his order and sees the order details, then

logs out. Then he logs in /dukes-store/ and click on Approve Shipment. He’s

redirected to /dukes-shipment/ where he finds Robert’s pending order. He

confirms the order and tags it as confirmed order. The administrator returns

to /dukes-store/ and sees the list of order where he deletes Robert’s confirmed

order from the list. He logs out.

AdminWantsToBuy The administrator logs in /dukes-store/, browses through

the products and buys for a total of $20. At the moment of the checkout from

the cart, he gets an error saying Administrators are not allowed to buy. He

clears the cart, checks that his order is not in the list of orders and logs out.

37

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

JackOverspends User Jack logs in /dukes-store/, browses through the products

and buys for a total of $1,550. He checks his order and finds it Cancelled

because $1000 order limit exceeded. He logs out. The administrator logs in

/dukes-store/ and click on Approve Shipment. He is redirected to /dukes-

shipment/ where he does not find Jack’s pending order. The administrator

returns to /dukes-store/ and sees the list of order where he finds Robert’s

cancelled order and deletes it from the list. He logs out.

KenSignedAndBanned New user Ken visits /dukes-store/ and starts the signing

procedure clicking on Sign In. He fills the forms with password 1234. He

clicks on Save but an error occurs because Password must be between 7 and

100 characters and not empty. He changes the password in 123456789 and

saves. Ken logs in, browses the products and logs out. The administrator logs

in /dukes-store/ and checks the list of customers. He finds Ken and changes

his address. He checks the changes and, then, he deletes Ken. He logs out.

AdminCreatesNewItems The administrator logs in /dukes-store/, browses th-

rough the categories and create a new one without description. An error

occurs, he adds the description and saves the new category. He check the

new category in the list of categories and changes his description again before

deleting it. He browses through the products and create a new one without

description. An error occurred, he adds the description and saves the new

product. He check the new product in the list of products and deletes it. He

logs out.

4.3 Experimental Results

This section consists of the results of some selected experiments we performed. In

all, 30 experiments plus a golden run were performed. For the purpose of exposure,

six experiments have been selected, each representative of a class of failures observed

during the entire experimental campaign. For each of the selected experiments, the

performed injection is reported with the diagnosis of the observed failure.

38

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

4.3.1 Experiment A

faulty component dukes-payment.war

changed method com.forest.payment.services.PaymentService.processPayment

line 36

operator Java Operator Missing If Around Statement

During the test JackOverspends, Jack logs in and checks out an order for $1,550. At

this point dukes-payment should refuse the order and cancel it because is greater

than $1,0001. Instead, because of the injected fault, the payment is approved and

the administrator can find the order in the Duke’s Shipment application. See Figure

4.2 for the screenshot.

Figure 4.2: Screenshot Experiment A - Payment Over $1000 Not Denied

4.3.2 Experiment B

faulty component dukes-payment.war

changed method com.forest.payment.services.PaymentService.processPayment

line 36
1recalling that $1,000 is a fake limit, but it can be considered as the total amount on a credit

card or bank account that should deny payment greater than actual balance.

39

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

operator Java Operator Missing If Plus Statement

This failure is the dual of 4.3.1, but it shows up in the RobertBuys test case. Robert

logs in and wants to spend $445. There should be no problem while the payment

is not accepted, cancelling the order as shown in Figure 4.3.

Figure 4.3: Screenshot Experiment B - Payment Under $1000 Denied

4.3.3 Experiment C

faulty component dukes-shipment.war

changed method com.forest.shipment.web.ShippingBean.getPendingOrders

line 9

operator Java Operator Missing If Around Statement

With this injection we are touching the duke’s shipment application that also mana-

ges the paid order. Running the test RobertBuys it seems everything goes without

any problem at client-side, but when the administrator checks the pending orders

he can’t find the one payed by Robert. Anyway he can find it in the list of orders,

realizing that it has been paid. In fact, analysing the server log in section B.1,

the order has been processed correctly and the payment has be done. Moreover

the order has been updated and the OrderBrowser doesn’t give any error even if it

doesn’t show the pending orders.

40

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

4.3.4 Experiment D

faulty component dukes-shipment.war

changed method com.forest.shipment.web.ShippingBean.getPendingOrders

line 16

operator Java Operator Missing Method Call

The scenario is similar to 4.3.3, but in this case we have an error page as in Figure

4.4 with an incomprehensible stack trace for the duke’s shipment user, i.e. the

administrator. The NullPointerException has not been caught by the application

and propagates to the interface of the application, showing up in this page.

Figure 4.4: Screenshot Experiment D - Error Page

4.3.5 Experiment E

faulty component dukes-store.war

changed method com.forest.ejb.AbstractFacade.count

line 60

operator Java Operator No Result Exception

41

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

As mentioned before, the Duke’s Store is injected with exceptions and, more preci-

sely, with exception related to database connections. Database failures, then, can

be simulated in order to understand how the application react when such an impor-

tant service is suddenly off. In this experiment, all the test cases that browse a list

(RobertBuys, KenSignedAndBanned, JackOverspends and AdminCreatesNewItems)

crash at the moment of rendering the result page with the list of items. The failure

consists in hanging on a blank page with not working navigation buttons at the top,

see Figure 4.5. The only way to go on the website is to interact directly with the

browser typing the homepage address. Anyway, each time the application need to

query the database it hangs on this kind of situation until the database connection

is restored.

Figure 4.5: Screenshot Experiment E - Blank Page with Not Working Navigation
Buttons

Focusing on the detection, the server log can help. Section B.2 shows how the

database error causes two unhandled exceptions:

• An EJBException, that usually report that the invoked business method or

callback method could not be completed because of an unexpected error, e.g.

the instance failed to open a database connection.

• An ELException, a subclass of runtime exception, representing any of the ex-

ception conditions that can arise during expression evaluation; less significant

but indication of the page rendering problem.

42

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

4.3.6 Experiment F

faulty component dukes-store.war

changed method com.forest.ejb.UserBean.getUserByEmail

line 23

operator Java Operator No Result Exception

This injection affects the whole test suite because the consequence is that neither

the users nor the administrator can log in the application. A further anomaly could

be the visualized page when we first try to log in, shown in Figure 4.6. Here there

is both an error message with the java exception written in bold red, and the little

pop up message that ensure the user to be logged in.

Figure 4.6: Screenshot Experiment F - Page with Discordant Message

In order to understand the transient nature of this failure, the component has

been injected again with the same operator in the same location but with the remote

option. The trigger mode chosen is user-triggered in order to activate and deactivate

the fault as needed. A new test case has been executed, with this flow:

1. User Robert logs in;

2. The Remote Controller is activated, the trigger mode chosen is synchronous

and the fault is deactivated;

43

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

3. User Robert makes some shopping and logs out;

4. The fault is activated in the Remote Controller;

5. User Robert tries and logs in but gets the error as before.

6. The fault is deactivated in the Remote Controller.

7. User Robert tries and logs in but gets another error, as shown in Figure 4.7.

Figure 4.7: Screenshot Experiment F - Login Invalid after Deactivation of the Fault

The reason of this new failure mode can be extracted by the server log, repor-

ted in B.3.2. The log starts with the records of the remote controller activation.

Using the RMI mechanism, the application gets the registry and the remote object

reference. Then the error activator is initialized and gets the activation parameters.

As written in the log, the trigger mode is 0, i.e. user-triggered, and the boolean

variable for the activation of the fault is set to false. Subsequently there are the

records for a purchase with payment and shipment. When the user logs out and

logs in again the fault is switched on and, as expected, the exceptions are recorded

in the similar way to the previous case. Since the user did not succeed in logging

in, remotely the fault is deactivated and the user tries to log in again. Although

the fault is off, the session keeps memory of the failed trial and does not even try

to query the database and logs the user. The unhandled exception in this case is a

ServletException, caused by the inconsistent state of the session.

44

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

4.4 Discussion of Results

A fault-tolerant design enables a system to continue its intended operation, possibly

at a reduced level, rather than failing completely, when some part of the system

fails [27]. Recovery from errors in fault-tolerant systems can be characterised as

either roll-forward or roll-back. When the system detects that it has made an

error, roll-forward recovery takes the system state at that time and corrects it, to

be able to move forward. Roll-back recovery reverts the system state back to some

earlier, correct version, for example using checkpointing, and moves forward from

there.

The experimental results can give us a way to discuss about the fault-tolerant

mechanisms and how they can be improved in our case study.

A first primitive property, derived from experiment B, can be a kind of caution

during the fault-tolerant mechanisms implementation. The failure is not really

dangerous because the e-shop does not lose any money and the user can see the

mismatch inside his list of orders. There is no immediate need to improve the fault

tolerance but a maintenance operation should be done to correct the defect when

it shows up. Here the application denies the transaction, keeps its state safe and

consistent and the user gets an error message, even if misleading.

A basic characteristic of fault tolerance requires redundancy, i.e. the duplica-

tion of critical components or functions of a system with the intention of increasing

reliability of the system. Software redundancy comes in two flavours:

asymmetric where a part of the application performs the computation and ano-

ther part is in charge of detecting errors and performing some kind of error

processing and recovery; this part makes use of redundant logic to check the

consistency of the return values of the services;

symmetric where all the parts have the same role; for example multiple functio-

nally equivalent programs are independently generated from the same initial

specifications, i.e. N-Version Programming.

45

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

In experiment A, the failure shows a defect inside a third-party application and

its user (in this case the administrator) can lose even money when some condition

are not verified correctly. In this case some redundancy should be added in the

dukes-shipment, but it is a service that the application uses. A different solution

is possible, operating directly on the application: a log cross validation. With

the hypothesis to have the logs of the services, they can be analysed with the logs

of the applications in order to detect any inconsistency between what the service

tells to the application and logs. Logs are useful even in case where no third-party

component is involved. In fact, experiment C ’s failure doesn’t affect the status of the

orders but prevent the administrator from seeing them. The time of the transaction

can increase drastically if the administrator does not catch the failure manually. In

order to detect promptly this kind of problems, it would be appropriate to introduce

a fault detection mechanism that analyses periodically the log and matching the

pending orders with the list visualized by the administrator. Then it can add the

pending order and notify the administrator.

Experiment D shows the problem of unhandled exceptions, common for langua-

ges of new generation as Java, that introduces a mechanism called error masking.

When an exception is raised, the application should have a handler for it in order

to give the user an appropriate error message instead of the stack trace of the appli-

cation. Locate where to add and implement carefully the try-catch blocks, guided

by fault injection experiment like this, is a useful maintenance operation. Further-

more, this situation can simply crashing the application without any message, as

experiment E, and this detection mechanism should also be associated at a specific

recovery mechanism. This should establish again a connection with the database

in a consistent way, better if the database is duplicated for a higher reliability.

Finally, the need of a more complex recovery mechanism is discovered by Ex-

periment F. The detection could be simply done catching the related exceptions

of the failure for the inconsistent state of the application. Thus, the application

should be able to reset the session, taking in count also the database entries for that

session. Thus, the fault tolerance should mask the failure to the user, revert the

46

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

system state back to some earlier correct version and try the queries again. Once

again, implemented this mechanism, suitable test cases can be performed using the

Faut Injection Tool for Java software applications.

47

Conclusion and Future

Developments

In this thesis we started with the notion of availability and how it is important for

nowadays software. Then we went through the software fault injection field study,

understanding why it is so important for software dependability. From chapter 2

on, we focused about a tool able to inject fault inside java bytecode. These fault

injections follow specific criteria and their design should have been so accurate.

There were also other features of the tool, from the management of java archive file

to the profiling, to the utility needed for the bytecode manipulation. Finally we

wanted to show how the tool works and which kind of results can be obtained. We

also briefly discuss about these results, making some consideration on the possible

fault-tolerant algorithms and mechanisms a software engineer should take in these

situations and more others.

A possible improvement of the fault injection tool could be to extend it with

more fault types. In fact, the fault types encompassed by the tool cover the most

frequent types of faults found in the field according to previous studies, but more

types could be introduced to increase the coverage of field faults, and to customize

the faultload to the types of faults experienced by the users on their specific systems

The mechanism of the inclination table can be substituted. The tool uses that

for the exception injections, because it does not know what kind of exception a

method can throw. Instead, the tool can develop the ability to watch inside the

java .class files, of the application and its libraries, in order to find this information.

The inheritance and polymorphism of java language can create some obstacles.

48

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Finally, the remote activation can include another mode. We can call it a stack-

triggered mode. The tool, at the moment of the activation, can check inside the

stack trace of the thread. This way allows the user to activate the fault only if a

declared method is part of the stack. This mode want to emulate situation where

the fault is activated only if a specific path has been taken during execution.

49

Appendix A

Swinging Algorithm Example

Figure A.1: Swinging Algorithm Example - (A) (B)

50

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Figure A.2: Swinging Algorithm Example - (C) (D) (E)

51

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

Figure A.3: Swinging Algorithm Example - (F) (G) (H)

52

Appendix B

Server Logs

B.1 Experiment C

[2013−11−29T17 : 00 : 07 .181+0100] [glassfish 4 . 0] [INFO]

[] [PaymentService] [tid : _ThreadID=113 _ThreadName=http−listener −1(1)] [←↩

timeMillis : 1385740807181] [levelValue : 800]

[[Amount : 4 9 5 . 0]]

[2013−11−29T17 : 00 : 07 .183+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . PaymentHandler] [tid : _ThreadID=147 _ThreadName=__ejb−←↩

thread−pool16] [timeMillis : 1385740807183] [levelValue : 800] [

[[PaymentHandler] Response status 2 0 0]]

[2013−11−29T17 : 00 : 07 .186+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=147 _ThreadName=__ejb−thread−←↩

pool16] [timeMillis : 1385740807186] [levelValue : 800]

[[Order id : 1 − Status : 2]]

[2013−11−29T17 : 00 : 07 .193+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=147 _ThreadName=__ejb−thread−←↩

pool16] [timeMillis : 1385740807193] [levelValue : 800]

[[Order Updated !]]

[2013−11−29T17 : 00 : 07 .195+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . PaymentHandler] [tid : _ThreadID=147 _ThreadName=__ejb−←↩

thread−pool16] [timeMillis : 1385740807195] [levelValue : 800]

[[Payment Approved]]

[2013−11−29T17 : 00 : 07 .198+0100] [glassfish 4 . 0] [INFO]

53

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[] [com . forest . handlers . DeliveryHandler] [tid : _ThreadID=129 _ThreadName=__ejb−←↩

thread−pool2] [timeMillis : 1385740807198] [levelValue : 800]

[[Order #1 has been paid in the amount of 495 . Order is now ready f o r delivery←↩

!]]

[2013−11−29T17 : 00 : 07 .199+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=129 _ThreadName=__ejb−thread−←↩

pool2] [timeMillis : 1385740807199] [levelValue : 800]

[[Order id : 1 − Status : 3]]

[2013−11−29T17 : 00 : 07 .200+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=129 _ThreadName=__ejb−thread−←↩

pool2] [timeMillis : 1385740807200] [levelValue : 800]

[[Order Updated !]]

[2013−11−29T17 : 00 : 08 .936+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=116 _ThreadName=http−←↩

listener −1(4)] [timeMillis : 1385740808936] [levelValue : 800]

[[Message ID : ID : 1 0 −1 2 7 . 0 . 1 . 1 (e8 : 6 7 : 2 6 : 9 : 4 4 : d5) −1−1385740807282]]

[2013−11−29T17 : 00 : 08 .973+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=116 _ThreadName=http−←↩

listener −1(4)] [timeMillis : 1385740808936] [levelValue : 800]

[[Message ID : ID : 1 0 −1 2 7 . 0 . 1 . 1 (e8 : 6 7 : 2 6 : 9 : 4 4 : d5) −1−1385740807282]]

[2013−11−29T17 : 00 : 08 .980+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=116 _ThreadName=http−←↩

listener −1(4)] [timeMillis : 1385740808936] [levelValue : 800]

[[Message ID : ID : 1 0 −1 2 7 . 0 . 1 . 1 (e8 : 6 7 : 2 6 : 9 : 4 4 : d5) −1−1385740807282]]

B.2 Experiment E

[2013−11−30T12 : 12 : 36 .759+0100] [glassfish 4 . 0] [INFO]

[] [PaymentService] [tid : _ThreadID=91 _ThreadName=http−listener −1(4)] [←↩

timeMillis : 1385809956759] [levelValue : 800]

[[Amount : 4 9 5 . 0]]

[2013−11−30T12 : 12 : 36 .771+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . PaymentHandler] [tid : _ThreadID=988 _ThreadName=__ejb−←↩

thread−pool10] [timeMillis : 1385809956771] [levelValue : 800]

[[[PaymentHandler] Response status 2 0 0]]

[2013−11−30T12 : 12 : 36 .773+0100] [glassfish 4 . 0] [INFO]

54

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=988 _ThreadName=__ejb−thread−←↩

pool10] [timeMillis : 1385809956773] [levelValue : 800]

[[Order id : 2 − Status : 2]]

[2013−11−30T12 : 12 : 36 .778+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=988 _ThreadName=__ejb−thread−←↩

pool10] [timeMillis : 1385809956778] [levelValue : 800]

[[Order Updated !]]

[2013−11−30T12 : 12 : 36 .779+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . PaymentHandler] [tid : _ThreadID=988 _ThreadName=__ejb−←↩

thread−pool10] [timeMillis : 1385809956779] [levelValue : 800]

[[Payment Approved]]

[2013−11−30T12 : 12 : 36 .792+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . DeliveryHandler] [tid : _ThreadID=990 _ThreadName=__ejb−←↩

thread−pool11] [timeMillis : 1385809956792] [levelValue : 800]

[[Order #2 has been paid in the amount of 495 . Order is now ready f o r delivery !]]

[2013−11−30T12 : 12 : 36 .796+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=990 _ThreadName=__ejb−thread−←↩

pool11] [timeMillis : 1385809956796] [levelValue : 800]

[[Order id : 2 − Status : 3]]

[2013−11−30T12 : 12 : 36 .816+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=990 _ThreadName=__ejb−thread−←↩

pool11] [timeMillis : 1385809956816] [levelValue : 800]

[[Order Updated !]]

[2013−11−30T12 : 12 : 38 .943+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=92 _ThreadName=http−←↩

listener −1(5)] [timeMillis : 1385809958943] [levelValue : 800]

[[Message ID : ID : 3 −1 2 7 . 0 . 1 . 1 (a8 : 2 : 1 5 : c5 : 1 f : d3) −1−1385809957076]]

[2013−11−30T12 : 12 : 40 .968+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=90 _ThreadName=http−←↩

listener −1(3)] [timeMillis : 1385809960968] [levelValue : 800]

[[Processing Order ID : 3 −1 2 7 . 0 . 1 . 1 (a8 : 2 : 1 5 : c5 : 1 f : d3) −1−1385809957076]]

[2013−11−30T12 : 12 : 41 .011+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=92 _ThreadName=http−listener←↩

−1(5)] [timeMillis : 1385809961011] [levelValue : 800]

[[Order id : 2 − Status : 4]]

[2013−11−30T12 : 12 : 41 .023+0100] [glassfish 4 . 0] [INFO]

55

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=92 _ThreadName=http−listener←↩

−1(5)] [timeMillis : 1385809961023] [levelValue : 800]

[[Order Updated !]]

[2013−11−30T12 : 12 : 41 .080+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=90 _ThreadName=http−←↩

listener −1(3)] [timeMillis : 1385809961080] [levelValue : 800]

[[No messages on the queue !]]

[2013−11−30T12 : 12 : 42 .261+0100] [glassfish 4 . 0] [WARNING]

[ejb . system_exception] [javax . enterprise . system . container . ejb . com . sun . ejb .←↩

containers]

[tid : _ThreadID=90 _ThreadName=http−listener −1(3)] [timeMillis : 1385809962261] [←↩

levelValue : 900]

[[EJB5184 : A system exception occurred during an invocation on EJB OrderBean , ←↩

method : p u b l i c i n t com . forest . ejb . AbstractFacade . count ()]]

[2013−11−30T12 : 12 : 42 .262+0100] [glassfish 4 . 0] [WARNING]

[] [javax . enterprise . system . container . ejb . com . sun . ejb . containers] [tid : _ThreadID←↩

=90 _ThreadName=http−listener −1(3)]

[timeMillis : 1385809962262] [levelValue : 900]

[[

javax . ejb . EJBException

at com . sun . ejb . containers . EJBContainerTransactionManager .←↩

processSystemException (EJBContainerTransactionManager . java : 7 4 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . completeNewTx (←↩

EJBContainerTransactionManager . java : 6 9 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . postInvokeTx (←↩

EJBContainerTransactionManager . java : 5 0 3)

at com . sun . ejb . containers . BaseContainer . postInvokeTx (BaseContainer . java : 4 4 7 5)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 2 0 0 9)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 1 9 7 9)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandler . invoke (←↩

EJBLocalObjectInvocationHandler . java : 2 2 0)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandlerDelegate . invoke (←↩

EJBLocalObjectInvocationHandlerDelegate . java : 8 8)

at com . sun . proxy . $Proxy336 . count (Unknown Source)

. . . (hidden f o r reason of space)

at java . lang . Thread . run (Thread . java : 7 4 4)

Caused by : javax . persistence . NoResultException

at com . forest . ejb . AbstractFacade . count (AbstractFacade . java : 7 2)

. . . (hidden f o r reason of space)

. . . 73 more

]]

[2013−11−30T12 : 12 : 42 .265+0100] [glassfish 4 . 0] [SEVERE]

56

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[] [javax . enterprise . resource . webcontainer . jsf . application] [tid : _ThreadID=90 ←↩

_ThreadName=http−listener −1(3)]

[timeMillis : 1385809962265] [levelValue : 1000]

[

[Error Rendering View [/ admin / order /List . xhtml]

javax . el . ELException : / admin / order /List . xhtml @19 , 217 rendered="#{←↩

customerOrderContro l l e r . pag inat ion . hasNextPage} " : javax . ejb . EJBException

at com . sun . faces . facelets . el . TagValueExpression . getValue (TagValueExpression .←↩

java : 1 1 4)

at javax . faces . component . ComponentStateHelper . eval (ComponentStateHelper . java←↩

: 1 9 4)

at javax . faces . component . UIComponentBase . isRendered (UIComponentBase . java : 4 6 2)

at com . sun . faces . renderkit . html_basic . HtmlBasicRenderer . encodeRecursive (←↩

HtmlBasicRenderer . java : 2 9 7)

at com . sun . faces . renderkit . html_basic . GroupRenderer . encodeChildren (←↩

GroupRenderer . java : 1 1 5)

. . . (hidden f o r reason of space)

at java . lang . Thread . run (Thread . java : 7 4 4)

Caused by : javax . el . ELException : javax . ejb . EJBException

at javax . el . BeanELResolver . getValue (BeanELResolver . java : 3 6 8)

at com . sun . faces . el . DemuxCompositeELResolver . _getValue (←↩

DemuxCompositeELResolver . java : 1 7 6)

at com . sun . faces . el . DemuxCompositeELResolver . getValue (←↩

DemuxCompositeELResolver . java : 2 0 3)

at com . sun . el . parser . AstValue . getValue (AstValue . java : 1 4 0)

at com . sun . el . parser . AstValue . getValue (AstValue . java : 2 0 4)

at com . sun . el . ValueExpressionImpl . getValue (ValueExpressionImpl . java : 2 2 6)

at org . jboss . weld . el . WeldValueExpression . getValue (WeldValueExpression . java←↩

: 5 0)

at com . sun . faces . facelets . el . TagValueExpression . getValue (TagValueExpression .←↩

java : 1 0 9)

. . . 56 more

Caused by : javax . ejb . EJBException

at com . sun . ejb . containers . EJBContainerTransactionManager .←↩

processSystemException (EJBContainerTransactionManager . java : 7 4 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . completeNewTx (←↩

EJBContainerTransactionManager . java : 6 9 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . postInvokeTx (←↩

EJBContainerTransactionManager . java : 5 0 3)

at com . sun . ejb . containers . BaseContainer . postInvokeTx (BaseContainer . java : 4 4 7 5)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 2 0 0 9)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 1 9 7 9)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandler . invoke (←↩

EJBLocalObjectInvocationHandler . java : 2 2 0)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandlerDelegate . invoke (←↩

EJBLocalObjectInvocationHandlerDelegate . java : 8 8)

57

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

at com . sun . proxy . $Proxy336 . count (Unknown Source)

. . . (hidden f o r reason of space)

. . . 63 more

Caused by : javax . persistence . NoResultException

at com . forest . ejb . AbstractFacade . count (AbstractFacade . java : 7 2)

at sun . reflect . NativeMethodAccessorImpl . invoke0 (Native Method)

at sun . reflect . NativeMethodAccessorImpl . invoke (NativeMethodAccessorImpl . java←↩

: 5 7)

at sun . reflect . DelegatingMethodAccessorImpl . invoke (←↩

DelegatingMethodAccessorImpl . java : 4 3)

. . . (hidden f o r reason of space)

. . . 73 more

]]

B.3 Experiment F

B.3.1 First Log

[2013−12−05T12 : 23 : 55 .044+0100] [glassfish 4 . 0] [WARNING]

[ejb . system_exception] [javax . enterprise . system . container . ejb . com . sun . ejb .←↩

containers]

[tid : _ThreadID=102 _ThreadName=http−listener −1(5)] [timeMillis : 1386242635044] [←↩

levelValue : 900]

[[

EJB5184 : A system exception occurred during an invocation on EJB UserBean , method :←↩

p u b l i c com . forest . entity . Person com . forest . ejb . UserBean . getUserByEmail (java .←↩

lang . String)]]

[2013−12−05T12 : 23 : 55 .044+0100] [glassfish 4 . 0] [WARNING]

[] [javax . enterprise . system . container . ejb . com . sun . ejb . containers]

[tid : _ThreadID=102 _ThreadName=http−listener −1(5)] [timeMillis : 1386242635044] [←↩

levelValue : 900]

[[

javax . ejb . EJBException

at com . sun . ejb . containers . EJBContainerTransactionManager .←↩

processSystemException (EJBContainerTransactionManager . java : 7 4 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . completeNewTx (←↩

EJBContainerTransactionManager . java : 6 9 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . postInvokeTx (←↩

EJBContainerTransactionManager . java : 5 0 3)

at com . sun . ejb . containers . BaseContainer . postInvokeTx (BaseContainer . java : 4 4 7 5)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 2 0 0 9)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 1 9 7 9)

58

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

at com . sun . ejb . containers . EJBLocalObjectInvocationHandler . invoke (←↩

EJBLocalObjectInvocationHandler . java : 2 2 0)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandlerDelegate . invoke (←↩

EJBLocalObjectInvocationHandlerDelegate . java : 8 8)

at com . sun . proxy . $Proxy286 . getUserByEmail (Unknown Source)

at com . forest . ejb . __EJB31_Generated__UserBean__Intf____Bean__ . getUserByEmail (←↩

Unknown Source)

at com . forest . web . UserController . login (UserController . java : 5 9)

at com . forest . web . UserController$Proxy$_$$_WeldClientProxy . login (Unknown ←↩

Source)

. . . (hidden f o r reason of space)

at java . lang . Thread . run (Thread . java : 7 4 4)

Caused by : javax . persistence . NoResultException

at com . forest . ejb . UserBean . getUserByEmail (UserBean . java : 4 6)

. . . (hidden f o r reason of space)

. . . 62 more

]]

[2013−12−05T12 : 23 : 55 .047+0100] [glassfish 4 . 0] [WARNING]

[] [javax . enterprise . resource . webcontainer . jsf . lifecycle]

[tid : _ThreadID=102 _ThreadName=http−listener −1(5)] [timeMillis : 1386242635047] [←↩

levelValue : 900]

[[#{ userController . login } : javax . ejb . EJBException

javax . faces . FacesException : #{userController . login } : javax . ejb . EJBException

at com . sun . faces . application . ActionListenerImpl . processAction (←↩

ActionListenerImpl . java : 1 1 8)

at javax . faces . component . UICommand . broadcast (UICommand . java : 3 1 5)

at javax . faces . component . UIViewRoot . broadcastEvents (UIViewRoot . java : 7 9 0)

at javax . faces . component . UIViewRoot . processApplication (UIViewRoot . java : 1 2 8 2)

at com . sun . faces . lifecycle . InvokeApplicationPhase . execute (←↩

InvokeApplicationPhase . java : 8 1)

at com . sun . faces . lifecycle . Phase . doPhase (Phase . java : 1 0 1)

. . . (hidden f o r reason of space)

at java . lang . Thread . run (Thread . java : 7 4 4)

Caused by : javax . faces . el . EvaluationException : javax . ejb . EJBException

at javax . faces . component . MethodBindingMethodExpressionAdapter . invoke (←↩

MethodBindingMethodExpressionAdapter . java : 1 0 1)

at com . sun . faces . application . ActionListenerImpl . processAction (←↩

ActionListenerImpl . java : 1 0 2)

. . . 46 more

Caused by : javax . ejb . EJBException

at com . sun . ejb . containers . EJBContainerTransactionManager .←↩

processSystemException (EJBContainerTransactionManager . java : 7 4 8)

59

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

at com . sun . ejb . containers . EJBContainerTransactionManager . completeNewTx (←↩

EJBContainerTransactionManager . java : 6 9 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . postInvokeTx (←↩

EJBContainerTransactionManager . java : 5 0 3)

at com . sun . ejb . containers . BaseContainer . postInvokeTx (BaseContainer . java : 4 4 7 5)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 2 0 0 9)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 1 9 7 9)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandler . invoke (←↩

EJBLocalObjectInvocationHandler . java : 2 2 0)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandlerDelegate . invoke (←↩

EJBLocalObjectInvocationHandlerDelegate . java : 8 8)

at com . sun . proxy . $Proxy286 . getUserByEmail (Unknown Source)

at com . forest . ejb . __EJB31_Generated__UserBean__Intf____Bean__ . getUserByEmail (←↩

Unknown Source)

at com . forest . web . UserController . login (UserController . java : 5 9)

at com . forest . web . UserController$Proxy$_$$_WeldClientProxy . login (Unknown ←↩

Source)

. . . (hidden f o r reason of space)

. . . 47 more

Caused by : javax . persistence . NoResultException

at com . forest . ejb . UserBean . getUserByEmail (UserBean . java : 4 6)

. . . (hidden f o r reason of space)

. . . 62 more

]]

B.3.2 Second Log

[2013−12−05T12 : 49 : 44 .791+0100] [glassfish 4 . 0] [INFO]

[] [] [tid : _ThreadID=99 _ThreadName=http−listener −1(2)] [timeMillis : ←↩

1386244184791] [levelValue : 800]

[[it already exists a security manager , be careful of the permission !]]

[2013−12−05T12 : 49 : 44 .793+0100] [glassfish 4 . 0] [SEVERE]

[] [] [tid : _ThreadID=99 _ThreadName=Thread−4] [timeMillis : 1386244184793] [←↩

levelValue : 1000]

[[Dec 05 , 2013 1 2 : 4 9 : 4 4 PM it . truestoryfactory . ken . JFI . RemoteClient . Client <init>

INFO : GOT : registry RegistryImpl_Stub [UnicastRef [liveRef : [endpoint←↩

: [1 9 2 . 1 6 8 . 5 6 . 1 : 3 0 0 0 0] (remote) , objID : [0 : 0 : 0 , 0]]]]]]

[2013−12−05T12 : 49 : 59 .828+0100] [glassfish 4 . 0] [SEVERE]

[] [] [tid : _ThreadID=99 _ThreadName=Thread−4] [timeMillis : 1386244199828] [←↩

levelValue : 1000]

[[Dec 05 , 2013 1 2 : 4 9 : 5 9 PM it . truestoryfactory . ken . JFI . RemoteClient . Client <init>

60

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

INFO : GOT : remote Proxy [RemoteControllerInterface , RemoteObjectInvocationHandler [←↩

UnicastRef

[liveRef : [endpoint : [1 9 2 . 1 6 8 . 5 6 . 1 : 5 0 8 2 6] (remote) , objID : [2 7 3 2 5 3 0 2 : 1 4 2 c2976014←↩

:−7fff , −6 4 5 9 3 1 6 8 2 8 9 9 3 2 6 8 5 6 9]]]]]]]

[2013−12−05T12 : 49 : 59 .865+0100] [glassfish 4 . 0] [INFO]

[] [] [tid : _ThreadID=99 _ThreadName=http−listener −1(2)] [timeMillis : ←↩

1386244199865] [levelValue : 800]

[[GOT : remote connected !]]

[2013−12−05T12 : 49 : 59 .865+0100] [glassfish 4 . 0] [INFO]

[] [] [tid : _ThreadID=99 _ThreadName=http−listener −1(2)] [timeMillis : ←↩

1386244199865] [levelValue : 800]

[[Error Activator inizialized with client f o r 1 9 2 . 1 6 8 . 5 6 . 1 with installed tm =0]]

[2013−12−05T12 : 50 : 07 .975+0100] [glassfish 4 . 0] [SEVERE]

[] [] [tid : _ThreadID=99 _ThreadName=Thread−4] [timeMillis : 1386244207975] [←↩

levelValue : 1000]

[[Dec 05 , 2013 1 2 : 5 0 : 0 7 PM it . truestoryfactory . ken . JFI . RemoteClient .←↩

ErrorActivator isActivatedRemotly

INFO : trigger mode is SYNCHRONOUS (approved = f a l s e]]

[2013−12−05T12 : 51 : 12 .979+0100] [glassfish 4 . 0] [INFO]

[] [PaymentService] [tid : _ThreadID=101 _ThreadName=http−listener −1(4)] [←↩

timeMillis : 1386244272979] [levelValue : 800]

[[Amount : 5 . 0]]

[2013−12−05T12 : 51 : 12 .982+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . PaymentHandler] [tid : _ThreadID=252 _ThreadName=__ejb−←↩

thread−pool8] [timeMillis : 1386244272982] [levelValue : 800]

[[[PaymentHandler] Response status 2 0 0]]

[2013−12−05T12 : 51 : 12 .984+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=252 _ThreadName=__ejb−thread−←↩

pool8] [timeMillis : 1386244272984] [levelValue : 800]

[[Order id : 1 − Status : 2]]

[2013−12−05T12 : 51 : 12 .995+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=252 _ThreadName=__ejb−thread−←↩

pool8] [timeMillis : 1386244272995] [levelValue : 800]

[[Order Updated !]]

[2013−12−05T12 : 51 : 12 .996+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . PaymentHandler] [tid : _ThreadID=252 _ThreadName=__ejb−←↩

thread−pool8] [timeMillis : 1386244272996] [levelValue : 800]

[[Payment Approved]]

61

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[2013−12−05T12 : 51 : 13 .000+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . handlers . DeliveryHandler] [tid : _ThreadID=254 _ThreadName=__ejb−←↩

thread−pool10] [timeMillis : 1386244273000] [levelValue : 800]

[[Order #1 has been paid in the amount of 5 . Order is now ready f o r delivery !]]

[2013−12−05T12 : 51 : 13 .001+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=254 _ThreadName=__ejb−thread−←↩

pool10] [timeMillis : 1386244273001] [levelValue : 800]

[[Order id : 1 − Status : 3]]

[2013−12−05T12 : 51 : 13 .011+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . ejb . ShoppingCart] [tid : _ThreadID=254 _ThreadName=__ejb−thread−←↩

pool10] [timeMillis : 1386244273011] [levelValue : 800]

[[Order Updated !]]

[2013−12−05T12 : 51 : 44 .915+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=100 _ThreadName=http−←↩

listener −1(3)] [timeMillis : 1386244304915] [levelValue : 800]

[[Message ID : ID : 2 −1 2 7 . 0 . 1 . 1 (db : 3 8 : c2 : f7 : fc : 3 5) −1−1386244273073]]

[2013−12−05T12 : 51 : 44 .920+0100] [glassfish 4 . 0] [INFO]

[] [com . forest . shipment . ejb . OrderBrowser] [tid : _ThreadID=100 _ThreadName=http−←↩

listener −1(3)] [timeMillis : 1386244304920] [levelValue : 800]

[[Processing Order ID : 2 −1 2 7 . 0 . 1 . 1 (db : 3 8 : c2 : f7 : fc : 3 5) −1−1386244273073]]

[2013−12−05T12 : 51 : 57 .959+0100] [glassfish 4 . 0] [SEVERE]

[] [] [tid : _ThreadID=102 _ThreadName=Thread−4] [timeMillis : 1386244317959] [←↩

levelValue : 1000]

[[Dec 05 , 2013 1 2 : 5 1 : 5 7 PM it . truestoryfactory . ken . JFI . RemoteClient .←↩

ErrorActivator isActivatedRemotly

INFO : trigger mode is SYNCHRONOUS (approved = true]]

[2013−12−05T12 : 51 : 57 .960+0100] [glassfish 4 . 0] [WARNING]

[ejb . system_exception] [javax . enterprise . system . container . ejb . com . sun . ejb .←↩

containers]

[tid : _ThreadID=102 _ThreadName=http−listener −1(5)] [timeMillis : 1386244317960] [←↩

levelValue : 900]

[[EJB5184 : A system exception occurred during an invocation on EJB UserBean , ←↩

method : p u b l i c com . forest . entity . Person com . forest . ejb . UserBean .←↩

getUserByEmail (java . lang . String)]]

[2013−12−05T12 : 51 : 57 .960+0100] [glassfish 4 . 0] [WARNING]

[] [javax . enterprise . system . container . ejb . com . sun . ejb . containers]

62

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[tid : _ThreadID=102 _ThreadName=http−listener −1(5)] [timeMillis : 1386244317960] [←↩

levelValue : 900]

[[javax . ejb . EJBException

at com . sun . ejb . containers . EJBContainerTransactionManager .←↩

processSystemException (EJBContainerTransactionManager . java : 7 4 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . completeNewTx (←↩

EJBContainerTransactionManager . java : 6 9 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . postInvokeTx (←↩

EJBContainerTransactionManager . java : 5 0 3)

at com . sun . ejb . containers . BaseContainer . postInvokeTx (BaseContainer . java : 4 4 7 5)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 2 0 0 9)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 1 9 7 9)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandler . invoke (←↩

EJBLocalObjectInvocationHandler . java : 2 2 0)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandlerDelegate . invoke (←↩

EJBLocalObjectInvocationHandlerDelegate . java : 8 8)

at com . sun . proxy . $Proxy349 . getUserByEmail (Unknown Source)

at com . forest . ejb . __EJB31_Generated__UserBean__Intf____Bean__ . getUserByEmail (←↩

Unknown Source)

at com . forest . web . UserController . login (UserController . java : 5 9)

at com . forest . web . UserController$Proxy$_$$_WeldClientProxy . login (Unknown ←↩

Source)

. . . (hidden f o r reason of space)

at java . lang . Thread . run (Thread . java : 7 4 4)

Caused by : javax . persistence . NoResultException

at com . forest . ejb . UserBean . getUserByEmail (UserBean . java : 4 6)

. . . (hidden f o r reason of space)

. . . 61 more

]]

[2013−12−05T12 : 51 : 57 .961+0100] [glassfish 4 . 0] [WARNING]

[] [javax . enterprise . resource . webcontainer . jsf . lifecycle]

[tid : _ThreadID=102 _ThreadName=http−listener −1(5)] [timeMillis : 1386244317961] [←↩

levelValue : 900]

[[#{ userController . login } : javax . ejb . EJBException

javax . faces . FacesException : #{userController . login } : javax . ejb . EJBException

at com . sun . faces . application . ActionListenerImpl . processAction (←↩

ActionListenerImpl . java : 1 1 8)

at javax . faces . component . UICommand . broadcast (UICommand . java : 3 1 5)

at javax . faces . component . UIViewRoot . broadcastEvents (UIViewRoot . java : 7 9 0)

at javax . faces . component . UIViewRoot . processApplication (UIViewRoot . java : 1 2 8 2)

at com . sun . faces . lifecycle . InvokeApplicationPhase . execute (←↩

InvokeApplicationPhase . java : 8 1)

at com . sun . faces . lifecycle . Phase . doPhase (Phase . java : 1 0 1)

. . . (hidden f o r reason of space)

63

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

at java . lang . Thread . run (Thread . java : 7 4 4)

Caused by : javax . faces . el . EvaluationException : javax . ejb . EJBException

at javax . faces . component . MethodBindingMethodExpressionAdapter . invoke (←↩

MethodBindingMethodExpressionAdapter . java : 1 0 1)

at com . sun . faces . application . ActionListenerImpl . processAction (←↩

ActionListenerImpl . java : 1 0 2)

. . . 45 more

Caused by : javax . ejb . EJBException

at com . sun . ejb . containers . EJBContainerTransactionManager .←↩

processSystemException (EJBContainerTransactionManager . java : 7 4 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . completeNewTx (←↩

EJBContainerTransactionManager . java : 6 9 8)

at com . sun . ejb . containers . EJBContainerTransactionManager . postInvokeTx (←↩

EJBContainerTransactionManager . java : 5 0 3)

at com . sun . ejb . containers . BaseContainer . postInvokeTx (BaseContainer . java : 4 4 7 5)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 2 0 0 9)

at com . sun . ejb . containers . BaseContainer . postInvoke (BaseContainer . java : 1 9 7 9)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandler . invoke (←↩

EJBLocalObjectInvocationHandler . java : 2 2 0)

at com . sun . ejb . containers . EJBLocalObjectInvocationHandlerDelegate . invoke (←↩

EJBLocalObjectInvocationHandlerDelegate . java : 8 8)

at com . sun . proxy . $Proxy349 . getUserByEmail (Unknown Source)

at com . forest . ejb . __EJB31_Generated__UserBean__Intf____Bean__ . getUserByEmail (←↩

Unknown Source)

at com . forest . web . UserController . login (UserController . java : 5 9)

at com . forest . web . UserController$Proxy$_$$_WeldClientProxy . login (Unknown ←↩

Source)

. . . (hidden f o r reason of space)

. . . 46 more

Caused by : javax . persistence . NoResultException

at com . forest . ejb . UserBean . getUserByEmail (UserBean . java : 4 6)

. . . (hidden f o r reason of space)

. . . 61 more

]]

[2013−12−05T12 : 52 : 03 .201+0100] [glassfish 4 . 0] [SEVERE]

[] [com . forest . web . UserController] [tid : _ThreadID=100 _ThreadName=http−listener←↩

−1(3)]

[timeMillis : 1386244323201] [levelValue : 1000]

[[javax . servlet . ServletException : This is request has already been authenticated

at org . apache . catalina . connector . Request . login (Request . java : 2 2 3 7)

at org . apache . catalina . connector . Request . login (Request . java : 2 2 2 4)

at org . apache . catalina . connector . RequestFacade . login (RequestFacade . java : 1 1 1 3)

at com . forest . web . UserController . login (UserController . java : 5 5)

64

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

at com . forest . web . UserController$Proxy$_$$_WeldClientProxy . login (Unknown ←↩

Source)

. . . (hidden f o r reason of space)

at java . lang . Thread . run (Thread . java : 7 4 4)

]]

65

Bibliography

[1] E. W. Dijkstra, E. W. Dijkstra, and E. W. Dijkstra, Notes on structu-

red programming. Technological University Eindhoven Netherlands, 1970.

(document)

[2] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts

and taxonomy of dependable and secure computing,” Dependable and Secu-

re Computing, IEEE Transactions on, vol. 1, no. 1, pp. 11–33, 2004. 1.1,

1.2

[3] R. Natella, “Achieving representative faultloads in software fault injection,”

Ph.D. dissertation, Università di Napoli Federico II, 2011. 1.2

[4] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Yaskin, J. Kownacki, J. Barton,

R. Dancey, A. Robinson, and T. Lin, “Fiat-fault injection based automated

testing environment,” in Fault-Tolerant Computing, 1988. FTCS-18, Digest of

Papers., Eighteenth International Symposium on. IEEE, 1988, pp. 102–107.

1.2

[5] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari: A fle-

xible software-based fault and error injection system,” Computers, IEEE

Transactions on, vol. 44, no. 2, pp. 248–260, 1995. 1.2

[6] S. Han, K. G. Shin, and H. A. Rosenberg, “Doctor: An integrated software

fault injection environment for distributed real-time systems,” in Computer

Performance and Dependability Symposium, 1995. Proceedings., International.

IEEE, 1995, pp. 204–213. 1.2

66

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[7] J. Carreira, H. Madeira, and J. G. Silva, “Xception: A technique for the

experimental evaluation of dependability in modern computers,” Software

Engineering, IEEE Transactions on, vol. 24, no. 2, pp. 125–136, 1998. 1.2

[8] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of

unix utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990.

1.2

[9] A. K. Ghosh, M. Schmid, and V. Shah, “Testing the robustness of windows nt

software,” in Software Reliability Engineering, 1998. Proceedings. The Ninth

International Symposium on. IEEE, 1998, pp. 231–235. 1.2

[10] P. Koopman and J. DeVale, “The exception handling effectiveness of posix ope-

rating systems,” Software Engineering, IEEE Transactions on, vol. 26, no. 9,

pp. 837–848, 2000. 1.2

[11] J. Arlat, J.-C. Fabre, and M. Rodríguez, “Dependability of cots microkernel-

based systems,” Computers, IEEE Transactions on, vol. 51, no. 2, pp. 138–163,

2002. 1.2

[12] J. Hudak, B.-H. Suh, D. Siewiorek, and Z. Segall, “Evaluation and compari-

son of fault-tolerant software techniques,” Reliability, IEEE Transactions on,

vol. 42, no. 2, pp. 190–204, 1993. 1.2

[13] W.-I. Kao, R. K. Iyer, and D. Tang, “Fine: A fault injection and monito-

ring environment for tracing the unix system behavior under faults,” Software

Engineering, IEEE Transactions on, vol. 19, no. 11, pp. 1105–1118, 1993. 1.2

[14] W.-L. Kao and R. K. Iyer, “Define: A distributed fault injection and monito-

ring environment,” in Fault-Tolerant Parallel and Distributed Systems, 1994.,

Proceedings of IEEE Workshop on. IEEE, 1994, pp. 252–259. 1.2

[15] J. A. Duraes and H. S. Madeira, “Emulation of software faults: a field data

study and a practical approach,” Software Engineering, IEEE Transactions on,

vol. 32, no. 11, pp. 849–867, 2006. 1.2, 1.3, 1.3.1

67

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[16] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data selection:

Help for the practicing programmer,” Computer, vol. 11, no. 4, pp. 34–41, 1978.

1.3

[17] M. Daran and P. Thévenod-Fosse, “Software error analysis: a real case study

involving real faults and mutations,” in ACM SIGSOFT Software Engineering

Notes, vol. 21, no. 3. ACM, 1996, pp. 158–171. 1.3

[18] J. H. Andrews, L. C. Briand, and Y. Labiche, “Is mutation an appropriate

tool for testing experiments?[software testing],” in Software Engineering, 2005.

ICSE 2005. Proceedings. 27th International Conference on. IEEE, 2005, pp.

402–411. 1.3

[19] T. Lindholm, F. Yellin, B. G., and A. Buckley, “The java virtual machine spe-

cification, java se 7 edition,” http://docs.oracle.com/javase/specs/jvms/se7/

jvms7.pdf, 2013. 1.3, 1

[20] T. Basso, R. Moraes, B. P. Sanches, and M. Jino, “An investigation of java

faults operators derived from a field data study on java software faults,” in

Workshop de Testes e Tolerância a Falhas, 2009, pp. 1–13. 1.3, 1.3.1

[21] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S. Moebus,

B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-a concept for in-

process measurements,” Software Engineering, IEEE Transactions on, vol. 18,

no. 11, pp. 943–956, 1992. 3

[22] R. Natella, D. Cotroneo, J. Duraes, and H. Madeira, “On fault representative-

ness of software fault injection,” Software Engineering, IEEE Transactions on,

vol. 39, no. 1, pp. 80–96, 2013. 2.1, 2.1.4

[23] A. V. Aho et al., Compilers: principles, techniques, & tools. Pearson

Education India, 2007. 2.2.5

[24] A. Common, “The byte code engineering library,” http://commons.apache.

org/proper/commons-bcel/, 2013. 3.1

68

http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
http://docs.oracle.com/javase/specs/jvms/se7/jvms7.pdf
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/

Facoltà di Ingegneria - Corso di Studi in Ingegneria Informatica A Fault Injection Tool For Java Software Applications

[25] E. Jendrock, R. Cervera-Navarro, I. Evans, K. Haase, W. Markito, and C. Sri-

vathsa, “The java ee 7 tutorial,” http://docs.oracle.com/javaee/7/tutorial/

doc/, 2013. 4.1, 4.2

[26] B. A. SeleniumHQ, “Selenium ide,” http://docs.seleniumhq.org/projects/ide/,

2013. 4.2

[27] B. W. Johnson, “Fault-tolerant microprocessor-based systems.” IEEE Micro,

vol. 4, no. 6, pp. 6–21, 1984. 4.4

[28] L. Chen and A. Avizienis, “N-version programming: A fault-tolerance approach

to reliability of software operation,” in Proc. 8th IEEE Int. Symp. on Fault-

Tolerant Computing (FTCS-8), 1978, pp. 3–9.

69

http://docs.oracle.com/javaee/7/tutorial/doc/
http://docs.oracle.com/javaee/7/tutorial/doc/
http://docs.seleniumhq.org/projects/ide/

	Introduction
	1 Software Fault Injection
	1.1 Basic Concepts
	1.2 State of Art
	1.3 Objective of the Thesis
	1.3.1 Injection of Software Defects
	1.3.2 Injection of Exceptions

	2 Tool Design
	2.1 Overview Architecture
	2.1.1 Façade Package
	2.1.2 Injection Package
	2.1.3 JarManagement Package
	2.1.4 Profiling Package
	2.1.5 Util Package
	2.1.6 Remote Activator

	2.2 Utilities
	2.2.1 Concepts and Definitions
	2.2.2 Boundary Table
	2.2.3 Loop Table
	2.2.4 Informer
	2.2.5 Instruction Tree

	2.3 Software Fault Operators
	2.3.1 Java Operator - Missing Method Call Design

	3 Tool Implementation
	3.1 Development Environment
	3.2 Java Operators
	3.2.1 Java Operator - Missing Method Call Implementation

	3.3 Remote Fault Activator

	4 Case Study: Duke’s Forest
	4.1 Overview of the Case Study
	4.2 Experimental Design
	4.3 Experimental Results
	4.3.1 Experiment A
	4.3.2 Experiment B
	4.3.3 Experiment C
	4.3.4 Experiment D
	4.3.5 Experiment E
	4.3.6 Experiment F

	4.4 Discussion of Results

	Conclusion and Future Developments
	A Swinging Algorithm Example
	B Server Logs
	B.1 Experiment C
	B.2 Experiment E
	B.3 Experiment F
	B.3.1 First Log
	B.3.2 Second Log

	Bibliography

